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Simulation of The Motion of A Droplet on A Plane

by The Discrete Morse Flow Method

Weerasak Dee-ama,b

a Department of Mathematics and Computer Science, Chulalongkorn University, Pathumwan,
Bangkok, 10330 Thailand, E-mail: WeerasakDee@student.chula.ac.th

bGraduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa
920-1192 Japan

Abstract. This research concerns the simulation of the motion of a droplet on a plane. We study
the film which represents the surface of the droplet [5]. The evolution of the film is described by the
hyperbolic equation with the volume preservation, which means that the volume between the film and
the surface where the droplet rests does not change in time. Moreover free boundary appears as a
moving boundary of the drop. The hyperbolic free boundary problem under the volume preservation
condition is solved by the discrete Morse flow method (DMF).

Keywords: droplet, volume preservation, free boundary, discrete Morse flow method

1 Introduction

The model of the motion of a droplet on a plane consists of two related parts: the film of the
droplet and fluid inside the film. In this work, we only study the film which represents the surface
of the droplet. The crucial features of the drop are the volume preservation, free boundary and
positive contact angle.

The shape of the surface of the drop can be represented by the graph of a scalar function

u : Ω× (0, T ) → (0,∞),

where Ω is a domain in R2, T is the positive real number and (0, T ) is the time interval.

Figure 1: Droplet on a plane.

The contact angle is assumed to be small and depend on the surface tensions described by
Young’s equation

γSG − γSL = γLG cos θ.

where γSG is the solid surface tension,γLG is the liquid surface tension,γSL is the solid/liquid
interfacial surface tension.

1
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Furthermore, the volume preservation of the film is assumtion∫
Ω

udx = V,

where V is the positive constant.
This problem is solved by the discrete Morse flow method.

2 Derivation of the film equation

In this section, we derive the film equation by calculating the first variation of the action function
of this phenomena. In order to define the action function, we have to consider the kinetic energy
and the potential energy of this problem. For the portential energy, we consider the surface energy
of the droplet which can be written as

E =

∫
Ω

γg
√
1 + |∇u|2χu>0dx+

∫
Ω

γsχu>0dx, (1)

where γg = γLG, γs = γSL − γSG, χu>0 the characteristic function.

By the assumtion of θ, |∇u| remains small. So the following Taylor approximation is available√
1 + |∇u|2 ≈ 1 +

1

2
|∇u|2. (2)

Then by the approximation 2, the equation 1 can be approximated as

Ẽ =

∫
Ω

γg
2
|∇u|2dx+

∫
Ω

R2χu>0dx, (3)

where R2 = γs + γg.
The kenetic energy of the film given by∫

Ω

σ

2
u2
tχu>0dx, (4)

where σ is the area density of the surface.
Hence, the Lagrangian of this problem can be expressed as

L(u) =

∫
Ω

(
σ

2
u2
tχu>0 −

γg
2
|∇u|2 −R2χϵ(u))dx, (5)

where χϵ is the smoothing function of the characteristic function given by

χϵ(u) =

{
1, u ≥ ϵ,
0, u ≤ 0.

and |χ′(u)| ≤ C/ϵ for u ∈ (0, ϵ). In order to avoid the existence of the delta function, we use χϵ

instead of χu>0 [7].
The action function within time interval (0, T ) can be written as

J(u) =

∫ T

0

L(u)dt (6)

2
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We have to seek a stationary point of the action function 6 in the following set

K = {u ∈ H1(Ω× (0, T ));u|∂Ω = 0,

∫
Ω

uχu>0dx = V }.

By assuming the existence of a stationary point, the first variation of the action function is

d

dϵ
J(uϵ)|ϵ=0 = 0,

with using the following test function and its volume are

φ ∈ C∞
0 ((0, T )× Ω ∩ {u > 0}), Φ =

∫
Ω

φ(t, x)dx.

and denoting

uϵ = V
u+ ϵφ

V + ϵΦ
.

We arrive at the following equation

0 =

∫ T

0

∫
Ω

(χu>0σutφt − γg∇u∇φ−R2χ′
ϵ(u)φ)dxdt (7)

+
1

V

∫ T

0

∫
Ω

(−σut(uΦ)tχu>0 + γg|∇u|2Φ+R2uχ′
ϵ(u)Φ)dxdt.

Let us consider the last term on the right hand side of the equation 7, we integrate this by
parts respect to time, we attain to

1

V

∫ T

0

∫
Ω

(−σut(uΦ)tχu>0 + γg|∇u|2Φ+R2uχ′
ϵ(u)Φ)dxdt

=
1

V

∫ T

0

∫
Ω

(σuuttχu>0 + γg|∇u|2 +R2uχ′
ϵ(u))Φdxdt

By denoting the Lagrange multiplier of this problem as

λ =
1

V

∫
Ω

(σuuttχu>0 + γg|∇u|2 +R2uχ′
ϵ(u))dx.

We get the following relation∫ T

0

∫
Ω

(−χu>0σutφt + γg∇u∇φ+R2χ′
ϵ(u)φ− λφ)dxdt = 0. (8)

The governing equation of the film is the strong from of above relation which can be expressed
as

χu>0σutt = γg∆u−R2χ′
ϵ(u) + λ, (9)

For our problem, we consider the film equation with damping term, µut(t, x), which is the
resistance force acting against the vertical motion of the film. It can be represented by the speed

3
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of the film with constant µ in [5]. By defining γ = 1 + γs

γg
and choosing σ = 1, γg = 1. We only

consider the positive solution of the following equation with the initial and boundary conditions
χu>0utt(t, x) = −µut(t, x) + ∆u(t, x)− γχ′

ϵ(u) + χu>0λ(t) in (0, T )× Ω,
u(t, x) = 0 on (0, T )× ∂Ω,
u(0, x) = u0(x) in Ω,
ut(0, x) = v0(x) in Ω,

(10)

where u0(x) and v0(x) are the initial shape and the initial velocity, respectively, and the Lagrange
multiplier is

λ =
1

V

∫
Ω

(uutt + µutu+ |∇u|2 + γuχ′
ϵ(u))dx.

3 Discrete Morse flow method

The discrete Morse flow is the variational method used to solved the problem that dependent on
time. The method was first presented to solve parabolic problem by N.Kikuchi in [6] and further
applied to hyperbolic problem later in [2] and others. Moreover, it was also applied to solve the
numerical solution of the free boundary problem in [1],[3] and the volume-preserving problem in
[4],[5].

We fix a non negative integer N > 0, set the time step h = T/N . We seek a sequence {un} by
minimize the following functional for our problem see [5]

Jn(u) =

∫
Ω

(
|u− 2un−1 + un−2|2

2h2
χu>0 + µ

|u− un−1|2

2h
+

|∇u|2

2
+ γχϵ(u))dx, (11)

on the set

Kv = {u ∈ H1
0 ;

∫
Ω

uχu>0dx = V }.

where the sequence {un} determine by u0 is the initial shape, u1 = u0 + hv0 and for n = 2, 3, 4, ...
un are the minimizer of the functional 11 on the set Kv.

4 Algorithm

We can find the sequence of minimizer, {un}, of our functional 11 by the following algorithm

1. Given the initial shape, u0 and initial velocity, v0, put u1 = u0 + hv0.

2. For n = 1, 2, · · · , N , we can seek un+1 as follows:

(a) p1 = un, k = 1.

(b) Repeat the following.

• search for the minimizer p̃k+1 of Jn,

• pk+1 = max(p̃k+1, 0),

• project pk+1 on the volume constraint hyperplane vk+1 := Proj(ṽk+1),

• if the convergence criterion is fulfilled, leave the loop, else k = k + 1.

(c) un+1 = pk+1.

4
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Figure 2: t = 0 Figure 3: t = 1

Figure 4: t = 4 Figure 5: t = 20

5 Numerical approach

In this section, we use the spherical cap represented the shape of the drop for the initial shape and
given the velocity of the drop into the suitable direction. By using the discrete Morse method for
our problem where the radius of the drop is 0.85, the contact angle is 15◦, ϵ is 0.01294 and the
time step is 7.5× 10−3 . The results is presented on above.
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Simulation of a Rising Oil Droplet using an Interface-Fluid Coupling

Ullul Azmya,b

aFaculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10,
Bandung 40132 Indonesia

bGraduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa
920-1192 Japan

Email: ullul.azmy@hotmail.com

Abstract. We develop a coupled interface-network and fluid model to simulate nonsymmetric
triple junction motion with arbitrary surface tension in two dimension. The motion of the inter-
face is governed by the gradient flow of a surface energy. For the numerical method, we adapt
a vector valued BMO algorithm. To advance the BMO algorithm, we use a vector-type discrete
Morse flow that handles the volume constraint via a penalization. Then, we add buoyancy force as
an outer force to the interface model. By using this method, we simulate phenomena of a rising
oil droplet in water. Lastly, we present the results of numerical experiments.

Keywords: triple junction motion, mean curvature flow, vector-valued thresholding

1 Introduction

Triple line dynamics appears when triple line, which refers to interface of three immiscible fluids
that intersect at one point, is moving due to some factors such as surface energy, fluid motion
and inertial effects. Understanding the triple line dynamics is very useful to realize some kind of
important motions. An example of such phenomena is the motion of a rising oil droplet. When
the oil droplet rise to the water surface, the interface of three different fluids meet at a single point
and adjust into the shape of triple line.

Numerical simulation of flows with moving triple line have been developed by using some meth-
ods. One of them is so-called Bence-Merriman-Osher (BMO) algorithm. Bence, Merriman, and
Osher [1] introduced the original BMO method, an implicit scheme for realizing interfacial motion
by mean curvature flow. Svadlenka et al. [2] reformulated the BMO algorithm in vector-valued
formulation for multiphase motion. However, it is restricted to the symmetric case. Shofianah et al.
[4] modified the original vector-valued BMO algorithm of [2] by generalizing the reference vectors
and the way of diffusing so that it can accomodate motions for any triple of surface tensions.

In this work, we consider three evolving curves meeting at a junction and having arbitrary
surface tensions. We adapt method in [4] to achieve the simulation of such a triple junction by
generalizing the reference vectors.

2 Basic Model

Triple line for two dimension case is actually a triple point which is called also a triple junction.
In our case, when the droplet touches the water surface, the triple junction occurs so that we have
three immiscible fluids whose interfaces meet at triple junction. Thus, to get the normal velocity
and the condition that has to be satisfied at triple junction, we have to consider the total surface
energy of the interfaces and compute its variation.

7
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For a fixed smooth region Ω of R2, we consider three evolving curves γi(s), s ∈ [pi, qi], i = 1, 2, 3.
These curves meet the outer boundary ∂Ω at a right angle and there will be a point, called triple
junction xT = γi(qi), i = 1, 2, 3, at which the curves meet. Each curve has different surface tension
σi. Then the surface energy of all curves is given by

L(γ) =
3∑
i=1

∫
γi

σidl =
3∑
i=1

∫ qi

pi

|γ′i(s)|ds

From its variation, we can find the gradient flow of surface energy. For a smooth vector field
ϕ(s) = (ϕ1, ϕ1), we compute

d

dε
L(γ + εϕ)|ε=0 =

3∑
i=1

∫ qi

pi

σiti·
d

ds
(ϕ(γi))ds

=
3∑
i=1

(
−
∫
γi

(σiκini)·ϕdl + σiti·ϕ(xT )

)
where ti is the tangential vector, κi is curvature, and ni is outer normal of γi with

ti =
γ′i
|γ′i|

, κi = −
γ′ixγ

′′
iy − γ′iyγ′′ix
|γ′i|3

,ni =
1

|γ′i|
(γ′iy − γ′ix)

Figure 1: Triple junction

From this result, the motion by gradient flow satisfies

1. The normal velocity of interface
vi = σiκi.

2. Condition at triple junction
3∑
i=1

σiti = 0, (1)

The junction condition (1) is the balance of forces which is well-known to be equivalent to the
Young’s law

sin θ1

σ1
=

sin θ2

σ2
=

sin θ3

σ3
,

8
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where θ1, θ2, and θ3 are the angles at the junction (see Figure 1). By connecting this formula to
the triangle as in [5], we obtain the junction angles by law of cosines:

cos(π − θ1) =
σ2

3 + σ2
2 − σ2

1

2σ2σ3
,

cos(π − θ2) =
σ2

1 + σ2
3 − σ2

2

2σ1σ3
,

θ1 + θ2 + θ3 = 2π

Note that as long as any given triple of surface tensions satisfies the triangle inequality, we can
compute the stable angles.

3 Numerical Method

3.1 Vector-valued BMO algorithm

The BMO algorithm is a process for realizing mean curvature motion of interfaces. Originally, it
takes advantage from the fact that the characteristic function of a region enclosed by an interface
is evolved for a small time by the heat equation according to its mean curvature. Then, a step
called truncation is implemeneted to obtain the new interface (given by the 1/2-level set of the
diffused function). The convergence of this algorithm goes to motion by mean curvature as the
short-time ∆t goes to zero (see [3]).

Svadlenka et al. in [2] modified the BMO algorithm with different approach so that it can treat
any number of phases in any dimension and can be extended to more general motions such motion
with transport. By reformulating this algorithm into vector-type setting, then:

1. Define reference vectors pi, each corresponding to a phase Pi for i = 1, 2, 3.

2. Given regions Pi, i = 1, 2, 3, set u0(x) = pi for x ∈ Pi.

3. Solve the vector-valued heat equation with initial condition u0(x)

ut(x, t) = ∆u(x, t) for (t, x) ∈ (0,∆t]× Ω (2)

∂u

∂n
= 0 on (0,∆t]× ∂Ω

u(x, 0) = u0(x) in Ω

4. Update u0 by identifying the reference vector which is closest to the solution u(x,∆t) (see
Figure 2 for illustration)

u0 = pj , where pj ·u(x,∆t) = max
i=0,1,...,k

pi·u(x,∆t)

The redistribution of reference vectors determines the configuration of each phase after time
∆t.

5. Repeat from step three for the next time step until desired time.

However, this method is only related to symmetric junctions. For arbitrary junction angles,
the reference vectors have to be generalized. The main ideas of the generalization were already
explained in [4] and will be outlined in the following part.

9
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p1

p2 p3

Figure 2: Reidentification of reference vector which is closest to the solution (yellow line)

3.2 Junction stability

Based on the stable configuration for triple junction that was explained in [4], we get

θ1p1 + θ2p2 + θ3p3 = 0. (3)

Since the reference vectors are determined up to rotation and scaling, we can choose one
reference vector arbitrarily, e.g., we set p3 = (1, 0). This closes system containing equation (3) and
condition of pi, i = 1, 2, 3, whose lengths must be equal, then we get the reference vectors:

p1 =

(
1− 2π

θ1θ3
(π − θ2),± 2

θ1θ3

√
π(π − θ1)(π − θ2)(π − θ3)

)
p2 =

(
1− 2π

θ2θ3
(π − θ1),∓ 2

θ2θ3

√
π(π − θ1)(π − θ2)(π − θ3)

)

The possible choices for the sign of the second component follow from the invariance of the
reference vectors with respect to flipping.

3.3 Minimizing movements

The heat equation is solved by using vector-type discrete Morse flow (DMF). For a given N > 0,
we solve (2) by discretizing time ∆t = h×N at each step and successively minimizing the following
functionals for n = 1, · · · , N over H1(Ω;R2)

Jn(u) =

∫
Ω

(
|u− un−1|2

h
+ |∇u|2

)
dx

The minimizers are found by conjugate gradient method.

In the volume constrained case, the minimization formulation of the vector-valued algorithm
allows the inclusion of volume constraints via a penalization. In particular, instead of the functional
Jn, we minimize

Fn(u) = Jn(u) +
1

ε

3∑
i=1

|Vi −meas(Pui )|2,

where ε > 0 is a small penalty parameter, Vi is the prescribed volume of region Pi.

10
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For the buoyancy effect, we include the transport term to the minimization formulation as in
[4], so we minimize

F̃n(u) = Fn(u) +

∫
Ω

f · u√
4πnh

,

where

f =


p

(pi · pj − 1)

|pi − pj |2
(pi − pj), if dist(x, γij) < δ1,

dist(x, Pk) > δ2

0, otherwise.

Here, γk, (k 6= i, j) is the interface between phase Pi and Pj . δ1, δ2 are small positive constants
(usually taken as several times the mesh size), p is fluid pressure, and pi,pj are the BMO reference
vectors.

4 Numerical Tests

Now, we present some numerical examples of the method. In this section, all numerical examples
are conducted on a [0, 1] × [0, 1] domain with time step ∆t = 0.002 and DMF partition N = 25.
We present the behaviour of the triple junction motion for two cases (with and without axial
symmetry) with types of setting as in Table 1.

Table 1: Numerical parameters for case 1 and case 2
parameter case 1 case 2

surface tensions
σ1

1
2

√
2

2
σ2 1 1

σ3

√
3

2

√
2

2

angles
θ1 150◦ 135◦

θ2 90◦ 90◦

θ3 120◦ 135◦

reference vectors
p1 (−0.8,−0.6) (−0.777,−0.628)
p2 (0, 1) (−0.333,−0.943)
p3 (1, 0) (1, 0)

For examining the behaviour of the triple junction motion, we start with an initial condition
where a T-shaped interface is rotated 90◦ counterclockwise and the T-junction is at point (0.25,0.5).
We take the region that is on the left of the line x = 0.25 as P2, and another top and bottom region
as P1 and P3 respectively. Here, the domain is triangulated into uniform grid with ∆x = 0.00625.
Then, we investigate the evolution of the triple junction for both cases.

1. 150◦ − 90◦ − 120◦ angle condition
For the first case, we plot the evolution of the initial T-junction for each time as in Figure 3.

For the first 20 time steps, the junction angles rapidly adjusts to approximate the 150◦ −
90◦ − 120◦ angle conditions. Note that the interface move to the region with the smallest
surface tension over time.

11
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(a) t = 0s (b) t = 0.04s (c) t = 0.08s (d) t = 0.12s

(e) t = 0.16s (f) t = 0.2s (g) t = 0.24s (h) t = 0.28s

Figure 3: Evolution of triple junction for case 1

2. 135◦ − 90◦ − 135◦ angle condition
Now we look at the behaviour of the junction motion with the parameter as on the second
condition. We expect these interfaces will evolve symmetrically with respect to the horizontal
line y = 0.5 since the surface tensions on the 1− 2 and 2− 3 interfaces are equal. This is in
accordance with the numerical result shown in Figure 4.

(a) t = 0s (b) t = 0.04s (c) t = 0.08s (d) t = 0.12s

(e) t = 0.16s (f) t = 0.2s (g) t = 0.24s (h) t = 0.28s

Figure 4: Evolution of triple junction for case 2

Note that the triple junction rapidly adjusts to approximate the 135◦ − 90◦ − 135◦ angle
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conditions after the first 20 time steps. Afterwards, the interface gradually is begun to move
horizontally to the right.

5 Conclusion

The triple junction motion with T-shaped interface as initial condition was presented. We took
two cases of parameters to know the behaviour of this motion. As remarks the test, the method
seems working well, so we would like to apply it for three dimensional rising droplet simulation
including the buoyancy force also.
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Abstract. Fluid flow through elastic porous medium is an interesting and complex problem in
fluid dynamics. Its complexity arises due to the necessity to take into account both the stress and
the strain in the structure of the elastic solid as it interacts with the fluid. In our work, we simu-
late this phenomenon by using the Smoothed Particle Hydrodynamics (SPH) method. In the SPH
method, the fluid and the elastic solid are represented using particles in the Lagrangian frame. We
compare various formulations of the interaction between the fluid an the elastic solid on a few test
cases, and we present the results of our simulations.

Keywords: Smoothed Particle Hydrodynamics, Elastic solid, Fluid-structure interaction, Porous
medium

1 Introduction

Fluid flow through an elastic porous medium is an interesting topic encountered in many research
fields of science and engineering. It has many application such as filtration process, blood vessel,
reservoir characterization, etc. Here we want to investigate the phenomenon with a simple model
of the sponge.

We try to simulate the fluid pass through the porous of the solid body. The position of the
fluid is on the top of the solid body. The fluid goes down because of the gravitation (body force).
The deformation of the elastic solid (sponge) occurred due to action of the fluid. We consider the
fluid-structure interaction to model the action of the fluid to the solid body, vice versa.

In addition, we simulate this phenomenon by using Smoothed Particle Hydrodynamics (SPH)
method. SPH is a meshless Lagrangian particle method to obtain numerical solutions of the fluid
dynamics equations. The method was introduced in [5] to solve an astrophysical problem. Recently,
the SPH method was developed in many application in computational fluid dynamics. We give a
brief introduction about the basic SPH method in this paper.

Moreover, we model the case with different parameter discretization and size of pore radius of
the sponge. It will show us the robustness of our method to solve this problem.

2 Governing Equations

We consider the governing equations of the motion of the fluid and solid body in isothermal
condition. It consists of continuity and momentum equation.
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2.1 Continuity equation

We use the continuity equation in Lagrangian framework. It can be written as,

Dρ

Dt
+ ρ (∇ · v) = 0 (1)

where ρ is density, t is time, v is the velocity. Here D
Dt is a material derivative. It is equal to

∂
∂t + (v · ∇). The last term in material derivative is called a convection derivative part. This
equation guarantee the mass conservation.

2.2 Momentum equation

The governing equation of momentum equation or the equation of motion can be written as,

ρ
Dv

Dt
= ∇ · σ + ρg (2)

where σ is the Cauchy stress tensor. It consists of pressure and deviatoric stress tensor. The last
term in equation (2) is body force term. The body force that we use in this case is gravitational
force.

2.2.1 Momentum equation of the fluid

Since we model the motion of the incompressible Newtonian fluid, the equation (2) can be shown
as,

ρf
Dvf
Dt

= −∇pf + η∆vf + ρfgf (3)

where pf and η denote the pressure and the dynamic viscosity. Note (.)f represents the physical
quantity of the fluid. The term ∇pf is pressure gradient term and the η∆vf is dissipation or
viscosity term.

2.2.2 Momentum equation of the solid body

The motion of the solid body is described by the following equation,

ρf
Dvs
Dt

= −∇ps +∇ · Ss + ρsgs (4)

where Ss is deviatoric stress tensor. Note (.)s represents the physical quantity of the solid body.
This equation is obtained by the stress tensor decomposition into its isotropic and deviatoric parts:

σij = −psδij + Sijs

from the equation (2). In [3] Monaghan proposed the following equation to compute the rate
change of deviatoric stress,

DSijs
Dt

= 2Gs

(
ε̇ijs −

1

3
δij ε̇ijs

)
+
∑
k

Siks Ωjks + Ωiks S
kj
s (5)

where

ε̇ijs =
1

2

(
∂vis

∂xjs
+
∂vjs
∂xis

)
(6)
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is the rate of deformation tensor

Ωijs =
1

2

(
∂vis

∂xjs
− ∂vjs
∂xis

)
(7)

is the spin tensor. Then, we use the equation of state to obtain pressure in the fluid and the solid
body,

p =
ρ0c

2

γ

((
ρ

ρ0

)γ
− 1

)
(8)

where ρ0 is the reference density, c is the speed of sound, and γ is a constant parameter.

3 Numerical Methods

3.1 Basic of SPH method

SPH approximate the Dirac delta function in an integral representation of a function by a smoothing
function Wh(d),

f(r) =

∫
Ω

f(r′)Wh(d)dΩ(r′) (9)

for
d = ‖r− r′‖

where f is the function of a position vector, h is the length of the smoothing function, and dΩ(r′)
represents a finite control volume in three dimensional space.

dab

h

ra

rb

Figure 1: Two dimensional ilustration of a smoothing function over a support domain

By using SPH particle approximation, we substitute the finite control volume dΩ(r′) with the
particle mb

ρb
, the equation (9) can be written as,

f(ra) =
∑
b

mb

ρb
f(rb)W

h(dab) (10)
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The quantity of the smoothing function depend on the distance between the particles dab. mb

and ρb denote mass and density of each particle. The illustration can be shown in figure 1. More
details about the SPH method can be found in [2] and [4].

3.2 Approximation of governing equations by SPH method

The SPH approximation of the continuity equation (1) for fluid and solid particles is,

Dρa
Dt

=
∑
b

mbvab · ∇aWab (11)

By using this equation we can update the density of each particle. This equation shows that the
time rate of density change of each particle is proportional to the relative velocities between the
center particle a and its neighbour particles b.

According to the equation (3), the SPH approximation for the material derivative of the velocity
of particle a is,

Dvia
Dt

= −
∑
b∈Ωf

mb

(
pa
ρ2
a

+
pb
ρ2
b

)
∇aWab +

η

ρa

∑
b∈Ωf

mbvab∇2
aWab + g (12)

where
Wab = Wh(dab) and vab = va − vb

The summation of the equation (12) is just for the fluid particles Ωf . This symmetric formula-
tion satisfies the action-reaction principle between the center particle a and particle b. To compute
the pressure gradient term we use smoothing function which has been proposed by [6],

Wh
spiky(d) =

15

πh6

{
(h− d)3, if 0 ≤ d ≤ h
0, otherwise

(13)

It is called spiky kernel. The gradient of this kernel will not vanish near the center. The kernel
can generates the repulsive force if the particles get too close to each other when we compute the
pressure gradient term[7].

To compute the viscosity term in equation (12) we use use this following smoothing function
which has been introduced by [7],

Wh
viscosity(d) =

15

2πh3

{
− d3

2h3 + d2

h2 + h
2d − 1, if 0 ≤ d ≤ h

0, otherwise
(14)

The SPH approximation of the momentum equation (4) of the solid particle a, which yields

Dvia
Dt

=
∑
b∈Ωs

mb

∑
j

(
σija
ρ2
a

+
σijb
ρ2
b

+ Πabδ
ij +

(
Rija
ρ2
a

+
Rijb
ρ2
b

)
fnab

)
∂Wab

∂xja
+ g (15)

The summation of the equation (15) is just for the solid particles Ωs. The term Πabδ
ij is a

dissipation term which has been proposed by [1]. It is used to remove velocity oscillations and
prevent unphysical penetration when the particles get too close each other in the SPH method.
We compute the dissipation term by using the following equation,

Πab =

{ αc0µab

ρab
, if µab < 0

0, otherwise
(16)
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µab =
h(va − vb) · (ra − rb)

d2
ab + (0.1h)2

In [3], Monaghan proposed artificial stress to removes tensile instability in the SPH method.
Tensile instability is the clustering phenomenon that can be happened when the solid particles is
stretched each other. The idea is by adding the repulsive force in terms of the kernel function and
the stress tensor when the particles in tensile stress condition. We obtain the artificial stress by
these following equations,

Rija = −ε
{
σija , if σija > 0
0, otherwise

(17)

and

fab =
Wh(dab)

Wh(∆s)
(18)

is the repulsive force which increases as the distance decreases and ∆s is initial distance between
solid particles.

We use the XSPH velocity correction from [4] to compute the strain tensor ε̇ and the spin tensor
Ωij in RHS of (5) and (11). The equation is given by

v̂a = va + 0.5
∑
b∈Ωs

mb

ρ̄ab
vbaWab (19)

When compute velocity correction in (19), we use a smoothing function from [3],

Wh
poly6(d) =

315

64πh9

{
(h2 − d2)3, if 0 ≤ d ≤ h
0, otherwise

(20)

Then to obtain the velocity gradient of the particle in the equation (6) and (7) is given by

∂v̂ia

∂xja
= −

∑
b∈Ωs

mb

ρb
v̂iab

∂Wab

∂xja
(21)

3.3 Fluid-structure interaction

To solve FSI problem, Antoci in [1] considered the shape of the solid body to compute the pressure
gradient. The results satisfy the experimental data. But it can be a big problem if the method
deals with a complex shape and deformation of the solid body.

However, we model the interaction between the fluid and the solid particles by using the SPH
approximation of the continuity and the momentum equation of the fluid particles. The FSI
problem is modeled by using these following rules:

• treat the solid particles as the fluid particles when we update the density of the fluid particles,
vice versa

dρa
dt

=
∑
b

mbvab · ∇aWab (22)

• treat the solid particles as the fluid particles when we compute the force exerted on the fluid
particles due to the solid particles,

fa(s→f) = −
∑
b∈Ωs

mbρb

(
pa
ρ2
a

+
pb
ρ2
b

)
∇aWab + η

∑
b∈Ωs

mbvba∇2
aWab (23)

18



ISCS 2015 Selected Papers Herlan Setiadi

• add repulsive force which has been introduced by [8] to the equation (22),

farepulsive
= Kf

∑
b∈Ωs

mamb

ρaρb
∇aWab (24)

• The force exerted on the solid particles due to the fluid particles is obtained by this rule,

fa(f→s) = −fa(s→f) (25)

In [9], Amini et al. modified the repulsive force of (24) because he used the cubic spline kernel.
The gradient of the kernel will vanish near the center. Since we use the kernel which has non zero
value near the center, we do not have to modified the repulsive force in (24).

4 Implementations of the SPH method and discussions

The position of the fluid is on the top of the solid body (sponge). The initial distance between the
bottom of the fluid particles and the top of the solid particles is 0.0045m. The thickness of the
sponge is 0.004m. It is attached to right and left side of the wall. The gravitation (g=9.8m/s) is
applied to all particles.

Figure 2: Geometry of the simulation

Water is used as the fluid with density ρf = 1000kg/m3. The small sound speed of the water is
chosen cf=30m/s and dynamic viscosity of the water is η=3.5x10-3kg/ms. The dimension of the
water as shown in figure 2.
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The sponge is modeled with density ρs = 950kg/m3. The small sound speed of the sponge is
chosen cs=31.6m/s. Also the shear modulus Gs=2x10-6N/m2. The shape of the pore as shown in
figure 3.

pore

Figure 3: Side view of the sponge

There are two kind of the simulations in this paper. The first one, we try to simulate the case
with different ratio of the pore radius rpore to kernel length h. The top view of the sponge as
shown in figure 4. The other one, we try to simulate the case with different kernel length but same
size of the pore.

4.1 The case with different size of the pore radius

We use the ratio of the pore radius to the length kernel to set the different size of the sponge pore.
There are four value for the ratio including 0.5, 1, 1.5 and 2. Each sponge has the regular size
of the pore and identical number of the porous. The parameter of the sponge is setted equal for
every simulation in this case. Then, we compare the average displacement of the solid particles
each time interval between the sponges.

The length of the kernel function h=0.001, the distance between fluid particles dfluid=8x10-4

and solid particles dsolid=5x10-4 are chosen. Also, the number particles for the fluid nfluid=68231
and the solid nsolid: 43696 (rpore=0.5h), 41533 (rpore=h), 37978 (rpore=1.5h), and 33160 (rpore=2h).
The time interval ∆t=10-5s is adopted.

We obtain the average displacement disavg of the solid particles of the sponge at certain time
t by using the following equation,

disavg =
1

N

N∑
i=1

(ri − r0)

where N is the number of solid particles, ri is the position of the solid particle at time t and r0 is
the position of the solid particle at initial position. The results as shown in figure 5. The largest

rpore

Figure 4: An illustration of the sponge from the top
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Figure 5: The displacement of the solid particles relative to its initial position for different size of
pore radius

average displacement of the solid particles is the sponge with the size of pore radius equal to 0.5h.
The smallest average displacement of the solid particles is the sponge with the size of pore equal to
2h. The different results is because the fluid which pass through the pore of the sponge rpore=2h
is easier than the pore of the sponge which smaller than 2h.

In addition, we can see the figure 6 as the explanation of the results. At the beginning t=0s
the amount of the fluid is equal each case. At t=0.05s the solid particles is stretched because of
the force from the fluid particles. The amount of the solid particles which passed through the solid
particles for rpore=2h is greater than rpore=1.5h at t=0.075s. Moreover, at t=0.1s the strain of
the sponge rpore=1.5h is greater than the sponge rpore=2h.

Hence, we conclude that the result for this case depends on the ratio of the kernel length to
the radius of pore.

4.2 The case with different length of the kernel

In this case, we want to test the robustness of our method. A robustness requirement aims to ensure
that the method does not depend on the discretization parameter h. The physical parameter that
we use same as the first case with rpore=0.0015m. The different with the first case is just we only
change the kernel length. The value of h=0.0013, 0.0012, 0.0011, and 0.001m are adopted.

In Figure 7 shows the average displacement of the solid particles relative to its initial position.
It can be seen the results at time 0 until 0.15 seconds is quietly similar. But at time 0.15 until 0.5
seconds the displacement of some sponges are different.

Our FSI method depends on the repulsive force parameter in (24). Here, we fix the value of
Kf = 108. To get the best results we have to adjust the parameter Kf in terms of h.
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(a) t=0s (b) t=0.05s (c) t=0.075s (d) t=0.1s

(e) t=0s (f) t=0.05s (g) t=0.075s (h) t=0.1s

Figure 6: The snapshots of the simulations for rpore=1.5h (a-d) and rpore=2h (e-h)

Figure 7: The displacement of the solid particles relative to its initial position for different length
of h
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5 Conclusions

We have presented SPH method for the fluid flow simulation through porous medium with various
radius of pore. In addition our method to simulate fluid-structure interaction and deformation
of the elastic solid (sponge) due to action of the fluid has been proposed. We should investigate
the relation between Kf and h to achieve the robustness of our method. In future work, the
fluid-structure interaction method can be extend to simulate the multi-phase flow through porous
medium (e.g. oil-filled pores), solidification process, etc.
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Abstract. There are many interesting phenomena concerning soap film. One of them is the soap film catenoid. 
The catenoid is the equilibrium shape of the soap film that is stretched between two circular rings. When the 
two rings move farther apart, the radius of the neck of the soap film will decrease until it reaches zero and the 
soap film is split. In our simulation, we show the evolution of the soap film when the rings move apart before the 
film splits. We use the BMO algorithm for the evolution of a surface accelerated by the mean curvature. !
Keywords:  soap film catenoid, minimal surface, hyperbolic mean curvature flow, BMO algorithm !
1.  Introduction !
The phenomena that concern soap bubble and soap films are very interesting. For example when 
soap bubbles are blown with any shape of bubble blowers, the soap bubbles will be round to be a 
minimal surface that is the minimized surface area. One of them that we are interested in is a soap 
film catenoid. The catenoid is the minimal surface and the equilibrium shape of the soap film 
stretched between two circular rings. 
 In the observation of the behaviour of the soap bubble catenoid [3], if two rings move farther 
apart, the radius of the neck of the soap film will decrease until it reaches zero. Then the soap film is 
split and a small bubble will appear.                                                                                               
 In this simulation, the soap film catenoid was simulated when the rings move apart before the 
film split by adapting BMO algorithm for the evolution of a surface accelerated by the mean 
curvature. 

2.  Derivation of the equation  !
When the force act to the interface in the normal direction, the equation of interfacial dynamics [2] is 
given by 
                                                                                 ! ,                                                                            (1)                                                                               
where !  is the interfacial normal acceleration, !  is the mean curvature, and !  is the unit normal 
vector to the interface. 
 The differential equation for the evolution (1) is 

                                                        
                                                                                     

                                                                      

where !  is a position function,       is an initial velocity and      is a parametrized curve.                                                         

A = �n

A  n

↵

8
><

>:

↵tt(t, x) = �(x) in (0, T ) ⇥ ⌦

↵t(t = 0, x) = �0(x) in ⌦

↵(t = 0, x) = �(x) in ⌦,

�0 �
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3. BMO algorithm for the evolution of a surface accelerated by the mean 
curvature 
The original BMO was proposed by Bence, Merriman, and Osher in [1]. The BMO is useful for 
computing motion of a soap film by mean curvature. In this paper, we use the idea of BMO for the 
evolution of a surface accelerated by the mean curvature [2] because the the soap film catenoid has 
the force that act on the interface to reduce its area. 
At a given  time ! ,                  , where                    and !  is a positive number. For 
Let        be a smooth curve and       be region enclosed by       and boundary at time    . 
We use two signed distance functions for initial condition. !
 !!
 !
 
1) Set                                      , where  !!
 
 
2)  Solve the wave equation with zero initial velocity and initial condition      at a time     !!!
         !
 
3)  Update the interface and the region.  
4)  Calculate          . !
4.  Model of a soap bubble catenoid !
4.1  Derivation of the equation concerning a soap bubble catenoid 
For the soap bubble catenoid, there is the force that act on the interface to reduce its area because the 
catenoid is the minimal surface. The force act on the interface that the curvature is      , where !  is the 
radius of the circle in the catenoid for each grid point. Adding        in the equation (1), we get 

  (2)                                                             !
 
 
 !! !

  Figure 1. The half of catenoid 
 
 The differential equation concerning the soap bubble catenoid (2) is !

T M

r1/r

r

1/r

8
><

>:

↵

00(t, x) = �(x) + 1/r(x) in (0, T ) ⇥ ⌦

↵

0(t = 0, x) = 0 in ⌦

↵(t = 0, x) = �(x) in ⌦,

d0(x) =

8
<

:

inf

y2�0

kx� yk
if x 2 E0

-inf

y2�0

kx� yk otherwise,

d�1(x) =

8
<

:

inf

y2�0�v0h
kx� yk

if x 2 E�1

-inf

y2�0�v0h
kx� yk otherwise.

u0

u0(x) = 2dk � dk�1

dk+1

8
>>><

>>>:

utt = 4u in (0, h) ⇥ ⌦

@u
@⌫ = 0 on (0, h) ⇥ @⌦

u(t = 0, x) = u0 in ⌦

ut(t = 0, x) = 0 in ⌦.

h

F
FF

A = (�+ 1/r)n.

dk(x) =

8
<

:

inf

y2�k

kx� yk
if x 2 Ek

-inf

y2�k

kx� yk otherwise.

k = 0, 1, ...,Mh = T/M 0 < h ⌧ 1
�k Ek �k k
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 where          is a closed curve that be parametrised and initial velocity is zero. 
 
4.2  BMO algorithm for a soap film catenoid 
At a given time ! ,                  , where                    and !  is a positive number. For 
1) Set                       . 
2) Compute the radius in the catenoid for each grid point. 
3)  Solve the equation with zero initial velocity and initial condition      at a time    !!!

(5) !!
4)  Update the interface and the region.  
5)  Calculate          . !
5.  The equation solving 
 
We solve the equation (5) by using finite difference method(central difference method for the second 
derivative).  Let          be  an  approximate  solution  at                    ,                              ,                                ,                   
                             and                   . Then the approximate solution is !
                                                                                                                                                                        . !
6.  Numerical results !
This simulation that we show is only some part of soap film catenoid.  !
!   grids, time discretisation is 0.001/10. !!!
7.  Conclusions 
The soap bubble catenoid !
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Triple junction simulation using acceleration dependent BMO
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Abstract. We develop a method to simulate multiple bubbles and the triple junction motion in
two dimensions driven by the mean curvature acceleration. The core of this method is the accel-
eration dependent BMO algorithm in a vector-valued formulation. To avoid a discontinuity in the
vector-valued function, we adopt a signed distance vector formulation. Moreover we also develop
the method for the area preserving motion.

Keywords: BMO algorithm, acceleration dependent BMO, triple juction, mean curvature ac-
celeration, hyperbolic mean curvature flow.

1 Introduction

Bubbles motion phenomenon has become an interesting research objective and there are many
models and methods to approach such motions. One of the methods is called Bence-Merriman-
Osher (BMO) algorithm. The original BMO algorithm [1] was introduced for realizing interfacial
motion by mean curvature flow. Ginder and Svadlenka [2] introduced the modified version of the
BMO algorithm for curvature-dependent interfacial acceleration. The method uses mean curvature
acceleration instead of mean curvature flow on the surfaces to evolve.

In particular we consider the motion of interface governed by equation below

A = −κn (1)

where A is acceleration of interface, κ is the mean curvature and n is unit normal vector.
We compare this method with Runge-Kutta fourth order for shrinking circle problem to see

behaviour of the result. In this research, we also implement the method for multiple bubbles. In
such phenomenon, we have to deal with triple junction. In order to handle multiple bubbles, we
implement vector-valued BMO.

2 General model

In general we assume that the interface of bubble on certain point is moving accelerated by its
mean curvature. The direction of its movement is on the opposite direction of normal vector. We
can write the problem as bellow.

Let α be a position function and n be a unit normal vector, then αtt = −κn,
αt(t = 0, s) = v0(s), s ∈ [0, 1)
α(t = 0, s) = γ(s), s ∈ [0, 1).

(2)
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Figure 1: General model

Figure 2: Three regions

where γ(s) is a parameterized closed curve with initial velocity v0 and κ is the mean curvature.

For multiple bubbles, each region Pi is assigned by reference vector pi(see Figure.2). The way to
construct reference vector we can see further at [3]. Each reference vector represent corresponding
region. Analog with characteristic function in the original BMO [1], 0 and 1 represent two different
regions.

3 Method

We approximate the motion with thresholding the solution to the wave equation which evolves
from its initial condition. For one bubble case, it uses signed distance function constructed by its
initial region. In the similar ways, for two or more bubbles, we implement signed distance vector
[4] defined by,

Definition 3.1 (Signed distance vector) For m number of region and ε > 0, we define the signed
distance vector dε : RN → Rm−1 by:

dε(x) :=
∑m
i=1

[
1−min

(
1, di(x)

ε

)]
pi,
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Three phases region Three phases SDV

Figure 3: Signed distance vector

where di(·) := dist(·, Pi) is distance to region Pi and pi is reference vector corresponding to
each region Pi. For example we can see three region signed distance vector at Figure.3.

3.1 Acceleration dependent BMO algorithm

Here is the algorithm for Acceleration dependent BMO.

• For given time T , take h = T/M , where M is positive integer.

• Define n−1 dimensional reference vectors pi for each corresponding to region Pi, i = 1, 2, ..., n.

• Set the signed distance vector using initial condition d0 and prepare d−1 obtained from the
initial velocity along the interface.

• For k = 0, 1, ...,M

1. Set u0(x) = 2dk−dk−1.

2. Solve the vector-valued wave equation with initial condition u0 for time interval h and
zero initial velocity 

utt = ∆u in (0, h)× Ω
∂u
∂ν = 0 on (0, h)× ∂Ω
u(t = 0, x) = u0 in Ω
ut(t = 0, x) = 0 in Ω

3. Update each regions and set signed distance vector dk+1.

To update region, here we use ”closest vector” to the reference vector. For illustration we can
see Figure.4. Here we have u(h, x) as a solution of wave equation, then we update u0 as

u0 = pj ,where pj · u(h, x) = max
i=1,2,...,n

pi · u(h, x)

After we determine phase region each nodes on the domain, we set signed distance vector by
Definition.3.1.
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Figure 4: Updating region to closest vector

3.2 Minimizing movements

To solve wave equation, we implement the discrete Morse flow method. Let τ = h/N be a time
discretization for given positive integer N . For each n = 1, . . . , N , functional Jn(u) defined over
H1(Ω;Rn−1):

Jn(u) =

∫
Ω

(
|u− 2un−1 + un−2|2

2τ2
+
|∇u|2

2

)
dx, (3)

where un−1 and un−2 are given functions. To preserve the area, we include a constraint via
penalization,

Fn(u) = Jn(u) +
1

ε

3∑
i=1

|Vi −meas(Pu
i )|2 (4)

where ε > 0 is a small penalty parameter and Vi is prescribed area of region Pi.

We approximate the functional (3) and (4) by using piecewise linear finite element. To find
minimizer of the functional here we use conjugate gradient method.

4 Numerical Result

Before we see numerical result, we do a numerical test for the method by comparing with Runge-
Kutta fourth order for shrinking circle problem.

4.1 Numerical Test

The shrinking circle problem satisfies (5),
rtt(t) = − 1

r(t) , t ∈ [0, T )

rt(0) = 0,
r(0) = 0.3,

(5)

For testing numerical result, we use various of parameters resolution and space/time. We
measure the error by computing time-average of the absolute difference between radius of numerical
result and Runge-Kutta fourth order. For Runge-Kutta fourth order, we use very small time step
so it can represent the exact solution.
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Table 1: Comparison with Runge-Kutta fourth order
resolution space/time average radius error
40× 40 4 0.00666
40× 40 8 0.00521
40× 40 16 0.00537
80× 80 4 0.00259
80× 80 8 0.00278
80× 80 16 0.00328

160× 160 4 0.00164
160× 160 8 0.00156
160× 160 16 0.00145

From the comparison result at Table.1, we can see that the accuracy roughly increase almost
twice as we increase the resolution twice. And the error is smaller than corresponding space
discretization ∆x.

4.2 Numerical Simulation

1. This is the simulation of two phases case without area preservation, resolution 160×160 and
time discretization τ = 0.005/10. For initial condition, here we use such kind of area because
we want to see inertia effect while it evolve.

t = 0.000 t = 0.140 t = 0.215

t = 0.345 t = 0.495 t = 0.555

2. This is the simulation of two phases case with area preservation, resolution 160 × 160 and
time discretization τ = 0.005/10. We use two ellipses area as initial condition. Because these
two bubbles have the same phase, as the result it merges at certain time and remain as one
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region. And the area is also preserved.

t = 0.000 t = 0.170 t = 0.215

t = 0.275 t = 0.42 t = 0.575

3. This is the simulation of three phases case without area preservation, resolution 160 × 160
and time discretization τ = 0.005/10. For initial condition here we use symmetric area of
two squares. We can see inertia effect at the edge of the square.

t = 0 t = 0.035 t = 0.060

t = 0.085 t = 0.100 t = 0.115
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5 Conclusion

As conclusion, we implemented the acceleration dependent BMO method for simulating bubble
motion. We compared the numerical result for shrinking circle problem with Runge-Kutta fourth
order. We also implemented the method for area preservation and for multiple bubbles (three
area regions). For future work, this method can be applied for three dimensional bubble motion
simulation that involve external force also.
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Abstract. We simulate straight crack propagation using idea from the classical Griffith theory
and Francfort-Marigo energy. According to the energy-theoretic model proposed by Francfort and
Marigo, propagation of a straight crack is described by means of sum of elastic and surface energies.
We modify the Francfort-Marigo model by replacing the global minimum by a local one in order to
be consistent with the Griffith theory. We numerically construct some energy-theoretic propagation
of straight cracks using finite element method and show some discontinuous growth behaviour of
the crack.

Keywords: crack propagation, elasticity problem, finite element method

1 Introduction

Crack propagation can cause serious problems. Therefore, to understand the crack propagation
phenomenon is important. Griffith’s theory [3] tells that a crack will propagate only if the elastic
energy released during the crack growth is greater than or equal to the surface energy which is
proportional to the area of the new crack surfaces.

Francfort and Marigo [2] proposed a crack propagation model based on the total energy which
is a sum of elastic energy and surface energy. They extended the classical Griffith theory and
proposed the model to describe crack propagation. This is one of the most naive models for crack
propagation, but is not suitable for numerical simulation.

Although a number of crack propagation models and numerical algorithms have been proposed
in engineering and physics, as far as the authors know, any mathematically closed model which can
be numerically computable has not been established. Among the models, in particular, phase field
model proposed in [4] is remarkable for its easy numerical treatment. It is described as a gradient
flow of an approximate energy of the Francfort-Marigo energy by using the idea of Ambrosio-
Tortorelli regularization [1]. Since it has a similar form of the reaction-diffusion equation, its
numerical simulation is relatively easier than the other models. However, the accuracy of this
model has not been studied well due to the lack of an established model.

As a theoretically reliable model, we investigate the energy-theoretic one and numerically con-
struct some crack propagation. Which will be used as a reference solution to check the accuracy
of other crack propagation models such as the phase field model.

The outline of this paper is as follows. In the second section, we will give a two dimensional
setting of an antiplane displacement and mode III crack propagation with brief explanation about
the classical Griffith theory and the Francfort-Marigo model and how we use it to make simulation.
In the third section we will propose a localized Francfort-Marigo model and show some numerical
examples. In the last section we will give conclusions and future work.
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Figure 1: Domain

2 Classical Griffith Theory and the Francfort-Marigo Model

We consider a mode III crack propagation in a plate by the deformation perpendicular to the
plate. The plate is supposed to be an isotropic elastic material with constant thickness. We
suppose that x = (x1, x2) ∈ R2 is a Cartesian coordinate parallel to the plate, and that x3 is a
coordinate perpendicular to the plate. We assume that the deformation of the plate is limited to
the x3-direction. Therefore, we treat the problem as a two dimensional domain Ω. We assume a
displacement field ū has the following form :

ū(x1, x2, x3) = (0, 0, u(x1, x2))T

Let Ω be a bounded two dimensional domain, with a piecewise smooth boundary Γ = ∂Ω. We
suppose that ΓD is a non empty open portion of Γ and set ΓN := Γ \ ΓD. A crack in Ω is denoted
by Σ ⊂ Ω and its upper and lower sides are denoted by Σ+ and Σ− respectively. We suppose Σ is
a straight crack of length L with only one tip in Ω as shown in Figure 1.

According to [4], the antiplane displacement u satisfies the following equations :
∆u = 0 in Ω \ Σ
u = g on ΓD

∂u

∂n
= 0 on ΓN ∪ Σ±

(1)

We denote the solution u to (1) by û(L, g) ∈ H1(Ω \ Σ). We define a corresponding bilinear form
and an elastic energy :

a(u, v; Ω \ Σ) :=
µ

2

∫
Ω\Σ

∇u · ∇v dx,

E(L, g) := min
u|ΓD=g

a(u, u; Ω \ Σ) = a (û(L, g), û(L, g); Ω \ Σ) ,

where µ > 0 is a rigidity constant.
We suppose that the Dirichlet boundary condition depends on time t, that is u = g(t) = g(·, t)

on ΓD. The classical Griffith’s criterion for the crack propagation is derived from a balance of the
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Figure 2: A discontinuous crack propagation

released energy and the created crack length. According to the theory, so-called energy release late
G is defined as

G := −∂E

∂L
(L, g(t)) ≥ 0.

The crack Σ can propagate only if
G ≥ γ. (2)

Where the constant γ > 0 is called fracture toughness. This is called Griffith’s criterion. Francfort
and Marigo introduced the following total energy in (1):

E(L, g) := E(L, g) + γL (L := |Σ|),

which is a sum of the elastic energy E(L, g) and a surface energy γL. The condition (2) is also
equivalent to

∂E
∂L

(L, g(t)) ≤ 0. (3)

They proposed the following simple crack propagation model as an extension of the Griffith
theory. They considered that L(t) = |Σ(t)| is given by

L(t) := arg min
L−(t)≤L≤L∞

E(L, g(t))

L−(t) := sup
s<t

L(s),
(4)

where L0 is the width of Ω. We call (4) Francfort-Marigo model in this paper. We remark that
L(t) is a non-decreasing function, but can be discontinuous as shown in Figure 2.

We suppose that the boundary condition g(t) on ΓD is given in the following form :

g(t) = tg0(x) (x ∈ ΓD),

where x = (x1, x2) denotes the space variable. Since û(L, tg0) is given as û(L, tg0) = tû(L, g0), we
get

E(L, tg0) = a(tû(L, g0), tû(L, g0),Ω \ Σ) = t2a(û(L, g0), û(L, g0),Ω \ Σ) = t2E(L, g0).
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Figure 3: Graphs of elastic energy E(L, g0) with g0 = 1 (left) and g0 = cos2( πx1
2L∞

) (right)

Therefore the total energy becomes

E(L, t g0) = t2E(L, g0) + γL.

In this paper, for simplicity, we assume Ω = (0, L∞) × (−l, l) and Σ(t) = (0, L(t)] × {0} as
shown in Figure 1 and set µ = 2. Under the symmetry condition g0(x1,−l) = −g0(x1, l) on ΓD,
for the initial condition g0 = 1 and g0 = cos2( πx1

2L∞
), we get graphs of E(L, g0) as seen in Figure 3.

These graphs are computed by using FreeFem++ software [5].
From Figure 3, we can see the difference of the profiles of E(L, g0) between g0 = 1 and g0 =

cos2( πx1
2L∞

). On the left figure, the graph is concave. But on the right one, the graph has two parts,
concave and convex. These shapes essentially affect the type of crack propagation as will be seen
later.

3 Localized Francfort-Marigo model

From the Griffith theory, we know that a crack cannot propagate if (3) is not reached. But, as
we will see later, the Francfort-Marigo model (4) allows a crack to have a jump even if Griffith’s
criterion is not satisfied. So, we need to modify (4) to make it consistent to the classical Griffith’s
criterion.

In order to replace the global minimum in (4), we define a notion of a nearest local minimum.
We assume f ∈ C1([a, b]), we define a nearest local minimum of f in [a, b] as follows :

arg loc-min
a≤x≤b

f(x) :=

{
a ( if f ′(a) ≥ 0),

sup
{
x ∈ (a, b]; f ′(y) < 0 (∀y ∈ [a, x))

}
( if f ′(a) < 0).

We propose the following modification of the Francfort-Marigo model.

Problem 3.1 (localized Francfort-Marigo model). Let L∞ be the maximum length of the straight
crack in Ω. For a given initial crack Σ0 of length L0 ∈ (0, L∞), find Σ(t) of length L(t) for t ≥ 0
such that

L(t) = arg loc-min
L−(t)≤L≤L∞

E(L, g(t))(t ≥ 0),
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where

L−(t) :=

L0 (t = 0),
sup

0≤s<t
L(s) (t > 0).

Figure 4: Graph of total energy E(L, t g0) with g0 = 1

Figure 5: Graph of total energy E(L, t g0) with g0 = cos2( πx1
2L∞

)
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Figure 6: Length of crack propagation with g0 = 1

Figure 7: Length of crack propagation with g0 = cos2( πx1
2L∞

)

We set γ = 0.5 then using relation E(L, t g0) = t2E(L, g0) + γL, we get graphs of the total
energies as shown in Figures 4 and 5. In both cases in Figures 4 and 5, if the initial crack length
L0 is small enough as drawn by dots, the condition (4) is not reached until the end of these
simulations. We remark that a solution of Problem 3.1 does not propagate too, but one of the
original Francfort-Marigo model (4) does. But if we take L0 near 0.6 as drawn by square, length
suddenly jumps to the end, in one time for the case of g0 = 1.

On the other hand, in the case of g0 = cos2( πx1
2L∞

) there is a little jump and after that the crack
starts propagating smoothly until the end of length. The obtained solutions to Problem 3.1 are
shown in Figures 6 and 7. We remark that the difference of the behaviors of these solutions arises
from the difference of the profiles of E(L, g0) as shown in Figure 3.
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4 Conclusions and Future work

We studied energy-theoretic crack propagation models analytically and numerically in this paper.
We computed the elastic energy E(L, g0) for each L by using FreeFem++. For the Francfort-Marigo
model, we investigated the relations of the behaviour of a solution and the profile of the graph of
E(L, g0). We pointed out that the solution can propagate with a jump even if Griffith’s criterion
is not satisfied. We proposed a localized Francfort-Marigo model to make it more consistent to the
classical Griffith’s criterion and numerically constructed some solutions. We observed that they
exhibit several discontinuous behaviours but are consistent to Griffith’s criterion.

The behaviour of the solutions of Problem 3.1 which were constructed numerically in this paper
is expected to represent theoretical straight crack propagation in an ideal setting. They will be
useful for checking the accuracy and reliability of other models, such as the phase field model.
Some comparison results with Takaishi-Kimura model will be reported in our forthcoming paper.
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Abstract. We take a shape optimization approach to solve a free boundary problem of the Poisson
equation numerically. A numerical method called traction method invented by one of the authors
are applied. We begin by changing the free boundary problem to a shape optimization problem and
define a least square functional as a cost function. Then shape derivative of the cost function is
derived by using Lagrange multiplier method. Detail structures and profiles of exact solutions to a
concrete free boundary problem due to A. Henrot are also illustrated with proofs. They are used to
check the efficiency of the traction method.
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1 Introduction

Free Boundary Problem (FBP) deals with solving partial differential equations in a domain whose
boundary is partially unknown; that the portion of boundary is called a free boundary. The study
about free boundary problem is an important branch of partial differential equations (PDEs). In
most cases, it is difficult to obtain analytical exact solution of free boundary problem. Therefore
numerical analysis is needed to compute the approximation of the solutions.

Shape optimization approach can be used as one of the methods to solve free boundary problem
numerically. A numerical method called traction method was developed for solving many shape
optimization problems. However, the exact solution (optimal shape) is usually unknown even for a
simple problem since this method is often applied only in engineering field. Our aim in this paper
is to apply the traction method to obtain a numerical solution of free boundary problems. Then
to check the efficiency of the traction method, we consider the following free boundary problem,
since its exact solutions are analytically derived by using conformal mapping due to the idea of A.
Henrot [2].

Problem 1.1 Let µ be a given function in R2 with compact support. Find (u,Ω) such that
supp(µ) ⊂ Ω and 

−∆u = µ in Ω

u = 0 on Γ := ∂Ω
∂u

∂n
= −1 on Γ.
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where µ is a combination of Dirac functions

µ :=
N∑
j=1

αjδξj ,

with αj > 0 and ξj ∈ C ∼= R2.

The organization of this paper is as follows. In Section 2, the detail structures and profiles
of exact solutions to a concrete free boundary problem due to A. Henrot [2] are illustrated with
proofs. Then we change this free boundary problem to a shape optimization problem by defining
a cost function. Cost function is a function that we want to minimize it. Afterwards, we derive
variation formula of the cost function using Lagrange multiplier method and an adjoint problem.
Finally we can apply the traction method and compare its result with the exact solutions from the
previous section.

2 Exact Solutions

We solve Problem 1.1 analytically by using conformal mapping. In this section, we identify R2 ∼= C.
Especially, we denote a R2-coordinate in Ω by x = (x1, x2) and its complex representation by
ξ = x1 + ix2 ∈ C. But we often mix these notation if no confusion occurs. For a complex variable
ξ = x1 + ix2 ∈ C, we denote the two dimensional Lebesgue measure by dL2

ξ . Let

G0 := {Ω |Ω is a bounded open set in R2, supp(µ) ⊂ Ω, ∂Ω is Lipschitz}.

We define a cut-off function η ∈ C∞(Ω) such that η(x) = 1 in a neighborhood of ∂Ω and η(x) = 0
in neighborhood of supp(µ). We call (u,Ω) a weak solution of Problem 1.1 if Ω ∈ G0 and they
satisfy, 

∫
Ω

∇u · ∇ϕdx = −
∫
∂Ω

ϕds (∀ϕ ∈ H1(Ω), supp(µ) ∩ supp(ϕ) = ∅)

u(x)−
N∑
j=1

αjE(x− ξj) is harmonic function in Ω

ηu ∈ H1
0 (Ω),

where E(x) = − 1
2π log |x| is the fundamental solution for −∆.

Lemma 2.1 Let Ω1 and Ω2 are bounded domains. We suppose that u ∈ H1
0 (Ω1) and set Φ(z) as

a conformal mapping that maps Ω0 to Ω1, and w(z) := u(Φ(z)) for z ∈ Ω0. Then w ∈ H1
0 (Ω0).

Proof. We first remark the following equality:

‖∇(f ◦ Φ)‖L2(Ω0) = ‖∇f‖L2(Ω1).
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For z ∈ Ω0, we set ξ = Φ(z) ∈ Ω1. Then dL2
ξ = |Φ′(z)|2dL2

z holds. Since |∇(f ◦ Φ)(z)| =
|∇f(ξ)||Φ′(z)|, we have

‖∇(f ◦ Φ)‖L2(Ω0) =

∫
Ω0

|∇(f ◦ Φ)(z)|2dL2
z

=

∫
Ω0

|∇f(ξ)|2|Φ′(z)|2dL2
z

=

∫
Ω1

|∇f(ξ)|2dL2
ξ

= ‖∇f‖2L2(Ω1).

We choose a sequence {un} ⊂ C∞0 (Ω1) which satisfies

lim
n→∞

‖u− un‖H1(Ω1) = 0

and define wn := un ◦Φ ∈ C∞0 (Ω0). Since {un} is a Cauchy sequence in H1
0 (Ω1), from the Poincaré

inequality we have

‖wm − wn‖H1(Ω0) ≤ C(Ω0)‖∇(wm − wn)‖L2(Ω0)

= C(Ω0)‖∇(um − un)‖L2(Ω1)

≤ C(Ω0)‖(um − un)‖H1(Ω1),

and it follows that {wn} is a Cauchy sequence in H1(Ω0). Hence, there exists w∗ ∈ H1
0 (Ω0) such

that

lim
n→∞

‖w∗ − wn‖H1(Ω0) = 0.

For an arbitrary subdomain D with D̄ ⊂ Ω0, we have

‖w − w∗‖L2(D) ≤ ‖w − wn‖L2(D) + ‖wn − w∗‖L2(D)

≤ ‖w − wn‖L2(D) + ‖wn − w∗‖H1(Ω0),

where the second term tends to 0 as n→∞. On the other hand, the first term also converges to
0 as n→∞ as follows:

‖w − wn‖2L2(D) =

∫
D

|(w − wn)(z)|2 dL2
z

=

∫
Φ(D)

|(u− un)(ξ)|2 1

|Φ′(z)|
dL2

ξ

≤ C2
D

∫
ΦD

|u− un|2 dL2
ξ

= C2
D‖(u− un)(ξ)‖2L2(Φ(D))

≤ C2
D‖u− un‖2L2(Ω1),

where CD = (minz∈D̄ |Φ′(z)|)−1. Hence we have w = w∗ in L2(D) for an arbitrary domain D with
D̄ ⊂ Ω0. This implies

w(z) = w∗(z) L2
z-a.e. z ∈ Ω0,
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and we conclude that w ∈ H1
0 (Ω0). �

The following theorems are given in [2] without detail of their proofs. We give a proof here for
the readers convenience.

Theorem 2.1 (A. Henrot [2]) Suppose N = 1. Then (u,Ω) is a weak solution of Problem 1.1,
if and only if α1 > 0 and 

Ω =
{
x ∈ R2

∣∣ |x− ξ1| < α1

2π

}
u =

α1

2π
log

α1

2π|x− ξ1|
.

(1)

Proof. It is easy to show that (1) is a solution of Problem 1.1. We suppose that (u,Ω) is a weak
solution of Problem 1.1. We show that Ω is connected. Let Ω0 is an open component of Ω with
ξ1 /∈ Ω0, then ∆u = 0 on Ω0 and∫

Ω0

∇u · ∇ϕdx = −
∫
∂Ω0

ϕds ∀ϕ ∈ H1(Ω0).

We choose ϕ = 1 in Ω0, then we have

−|∂Ω0| = −
∫
∂Ω0

ϕds =

∫
Ω0

∇u · ∇ϕdx = 0.

This contradicts to |∂Ω0| > 0. Hence, all of the component of Ω has to include ξ1. Therefore, Ω is
connected.

Let Φ(z) be a conformal mapping from the unit disc D0 := {z ∈ C
∣∣|z| < 1} to Ω with Φ(0) = ξ1

and Φ′(0) > 0. We define

Ψ(z) :=


Φ(z)− Φ(0)

z
(z 6= 0, z ∈ D0)

Φ′(0) (z = 0),
(2)

then Ψ(z) is holomorphic in D0 and Ψ(z) 6= 0 for z ∈ D0.

We define w(z) = u(Φ(z)) (z ∈ D0). From the conditions ∆u0 = 0 in Ω,

u(ξ) = α1E(ξ − ξ1) + u0(ξ) (ξ ∈ Ω \ {ξ1}),

we have

w(z) = α1E(Φ(z)− ξ1) + u0(Φ(z))

= α1E(Φ(z)− Φ(0)) + u0(Φ(z))

= α1E(zΨ(z)) + u0(Φ(z))

= α1E(z)− α1

2π
log |Ψ(z)|+ u0(Φ(z)).

Since the second and third terms of the equation above are harmonic in D0, we obtain −∆w = α1δ0
in D0. We define w̃(z) := η(Φ(z))w(z) = (ηu)◦Φ(z). From Lemma 2.1, w̃ ∈ H1

0 (D0). Since w̃ = w
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in a neighborhood of ∂D0 and is harmonic, from the theory of elliptic regularity [4], w is smooth
up to ∂D0 and w = 0 on ∂D0. Hence, the following equations holds

−∆w = α1δ0 in D0

w = 0 on ∂D0

∂w

∂n
= −|∇w| = −|∇u||Φ′| = −|Φ′| on ∂D0.

(3)

From the first two equations of (3), we have w(z) = α1E(z) and

∂w

∂n
= −α1

2π

( ∂
∂r

log r
)∣∣∣
r=1

= −α1

2π
.

By the third condition of (3), we obtain |Φ′(z)| = α1

2π on ∂D0. We set v(x, y) := Re[log |Φ′(z)|] =
log |Φ′(z)| and v(z) is harmonic since Φ is holomorphic and Φ′(z) 6= 0 in D0 . Then ∆v = 0 in D0

and v = log α1

2π on ∂D0 hold and these imply that v = log α1

2π in D0. Since Re[log Φ′(z)] = v = log α1

2π
in D0, we obtain that log Φ′(z) = log α1

2π + iβ for β ∈ R. From the condition Φ′(0) > 0, β = 0
follows. Hence we have Φ′(z) = α1

2π and conclude that

Φ(z) =
α1

2π
z + ξ1,

where we used Φ(0) = ξ1. Therefore by the conformal mapping Φ(z) we obtain

Ω = {x ∈ R2
∣∣|x− ξ1| < α1

2π
}

as a solution of Problem 1.1.
We know that u = 0 on ∂Ω, then we have u0 = α1

2π log α1

2π . Hence we can conclude that

u(x) = −α1

2π
log |x− ξ1|+

α1

2π
log

α1

2π
=
α1

2π
log

α1

2π|x− ξ1|
.

�

Let us consider the case N = 2. We suppose that c > 0 and ξ1, ξ2 ∈ C ∼= R2 are given as ξ1 = c
and ξ2 = −c. We denote the Dirac function at ξ1 and ξ2 by δc and δ−c, respectively, we consider

µ = αδc + αδ−c (4)

for same α > 0. Then we define a conformal mapping on D0

Φa(z) :=
α(1− a4)

4πa2

[
−2z

z2 − 1/a2
+ a log

1/a+ z

1/a− z

]
(5)

for 0 < a < 1.

Theorem 2.2 (A.Henrot [2]) We suppose a function µ as in (4),

1. (u,Ω) is a weak solution to Problem 1.1 and Ω is connected, if and only if there exists
a ∈ (0, 1) such that c = Φa(a), Ω = Φa(D0), and u(ξ) = w(Φ−1

a (ξ)), ξ ∈ Ω, where

w(z) :=
α

2π
log

∣∣∣∣1− a2z2

z2 − a2

∣∣∣∣ (z ∈ D0). (6)
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2. (u,Ω) is a weak solution to Problem 1.1 and Ω is disconnected if and only if α
2π < c and the

solution is given by 
Ω = B

(
ξ1,

α

2π

)
∪B

(
ξ2,

α

2π

)
,

u =


α

2π
log

1

|x− ξ1|

(
x ∈ B

(
ξ1,

α

2π

))
α

2π
log

1

|x− ξ2|

(
x ∈ B

(
ξ2,

α

2π

))
.

(7)

Proof. Let g̃ be a conformal mapping from D0 := {z ∈ C : |z| < 1} to Ω with g̃(0) = ξ1, and set
g̃(ξ2) = beiθ (0 < b < 1). We define g(z) := g̃(eiθ0z) and f : D0 → D0 be a Möbius transform.
Since f(a) = 0 and f(−a) = b

a :=
1−
√

1− b2
b

∈ (0, 1),

f(z) :=
a− z
1− az

.

We can define a conformal mapping Φ(z) := g(f(z)) which mapsD0 to the domain Ω with Φ(a) = ξ1
and Φ(−a) = ξ2. Set w(z) = u ◦ Φ(z) = u(Φ(z)), then by using the similar argument in the proof
of Theorem 2.1, we have 

−∆w = αδa + αδ−a in D0

w = 0 on ∂D0

∂w

∂n
= −|∇w| = −|∇u||Φ′| = −|Φ′| on ∂D0.

(8)

We define

w0(z) :=
1

α
w(z)− E(z − a)− E(z + a) (z ∈ D0).

Then w0(z) becomes a harmonic function in D0. Since w(z) = 0 on the boundary, for z ∈ ∂D0,
we obtain

w0(z) = −E(z − a)− E(z + a)

=
1

2π
(log |z − a|+ log |z + a|)

=
1

2π
log |z2 − a2|

=
1

2π
log |1− a2z2|.

Hence we have w0(z) = 1
2π log |1− a2z2| in D0. Then

w(z) =
α

2π
log

1

|z − a|
+

α

2π
log

1

|z + a|
+

α

2π
log |1− a2z2| = α

2π
log
|1− a2z2|
|z2 − a2|

.
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holds. From the third condition of (8), for z = eiθ ∈ ∂D0, we have

|Φ′(z)| = −∂w
∂n

(z)

= − ∂

∂r
w(reiθ)

∣∣∣∣
r=1

= − ∂

∂r

(
α

2π
log

∣∣∣∣1− a2r2e2iθ

r2e2iθ − a2

∣∣∣∣)∣∣∣∣
r=1

= − α

2π

∂

∂r

(
log |1− a2r2e2iθ| − log |r2e2iθ − a2|

)∣∣∣∣
r=1

= − α

4π

(
∂

∂r
(log |1− 2a2r2 cos 2θ + a4r4| − log |r4 − 2a2r2 cos 2θ + a4|)

)∣∣∣∣
r=1

= − α

4π

(
4a2(a2 − cos 2θ)− 4(1− a2 cos 2θ)

|e2iθ − a2|2

)
=
α

π

1− a4

|1− a2z2|2
.

Similarly to the proof of Theorem 2.1, the harmonic function v(z) := Re[log Φ′(z)] in D0 satisfies

v(z) = Re
[

log
(α
π

1− a4

|1− a2z2|2
)]

(z ∈ ∂D0).

Hence it follows that

log Φ′(z) = log(
α

π

1− a4

(1− a2z2)2
) + iβ (z ∈ D0),

for some β ∈ R. Then we have

Φ′(z) =
α

π
eiβ

1− a4

(1− a2z2)2
. (9)

We define

Φ0(z) =
(1− a4)

4πa2

[
−2z

z2 − 1/a2
+ a log

1/a+ z

1/a− z

]
.

Then, integrating (9), we have Φ(z) = eiβΦ0(z) + γ, where γ ∈ C. Since Φ(±a) = ±c, using
Φ0(a) + Φ0(−a) = 0, we obtain

0 = Φ(a) + Φ(−a) = eiβα(Φ(a)0 + Φ0(−a)) + 2γ = 2γ,

and γ = 0. Also from Φ0(a) > 0 (see Figure 1), β = 0 follows. Therefore we have

Φ(z) = Φa(z),

where Φa(z) is defined in (5).
It is easy to show that (u,Ω) defined in (7) is a solution of Problem 1.1 with µ as in (4) for

α
2π < c. Let us suppose (u,Ω) is a weak solution and Ω is disconnected. Then, from the same
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argument of the proof of Theorem 2.1, each open component of Ω should contain ξ1 or ξ2 and Ω
should have exactly two components Ω1 and Ω2 (ξ1 ∈ Ω1, ξ2 ∈ Ω2). Then from Theorem 2.1, we
obtain (7). �
Remark In the Henrot’s paper [2], equation (6.5) has a typo. The correct expression of (6.5) is∆v = 0 in Ω0

v = log
(α
π

1− a4

|1− a2z2|2
)

on ∂Ω0.

We define l = 2c, based on the conformal mapping Φa in (5), we know that α
l = 1

2Φ0(a) . Then

we can plot a graph α/l versus a as in Figure 1.

Figure 1: α/l vs a graph

From the graph in Figure 1, we can see that for 2.300.. < α/l < π there exist two connected
solution and that for α/l > π there exists a unique solution (which is connected). Table 1 shows
the number of the exact solutions of Problem 1.1 where µ as in (3). Although this table was
shown in [2], we present it in more detailed form, particularly for the values α/l = 2.300... and
α/l = 2.827.... According to [2], Ω is convex if and only if a ≤ 1/

√
3. We have α

l = 2.827... for

a = 1/
√

3.

Table 1: Table of number of the solutions

α/l 0 ... 2.300... ... 2.827... ... π ...
# connected convex solution 0 0 0 0 1 1 1 1
# connected non-convex solution 0 0 1 2 1 1 0 0
# connected solution 0 0 1 2 2 2 1 1
# disconnected solution 0 1 1 1 1 1 0 0

Example of connected solutions are given in Figure 2 - 7 for α = 3, where we use MATLAB
to draw them. We change α/l = 2.3007, 2.400, 2.827, 3.000, π, 3.300. Then the number of solutions
becomes 1, 2, 2, 2, 1, 1 for each figure.
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Figure 2: α/l = 2.300

Figure 3: α/l = 2.400

Figure 4: α/l = 2.827

Figure 5: α/l = 3.000
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Figure 6: α/l = π

Figure 7: α/l = 3.300

3 Shape Optimization Approach

We consider Problem 1.1 with µ as in (4). Then we replace µ by

µ(x) = αδε(x− ξ1) + αδε(x− ξ2) (10)

for sufficiently small ε < 0, where

δε(x) :=


1

πε2
|x| < ε

0 |x| ≥ ε.

We remark that the problems for µ = α(δc + δ−c) and for (10) are equivalent except for u(x) in
D := B(ξ1, ε) ∪B(ξ2, ε).

We fix β > 0, and rewrite Problem 1.1 in the following equivalent form with a Robin boundary
condition 

−∆u = µ in Ω

u = 0 on Γ

βu+
∂u

∂n
= −1 on Γ.

We define

G := {Ω |Ω is a bounded domain in R2, D̄ ⊂ Ω, ∂Ω : Lipschitz }.
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Then for given Ω ∈ G with Γ = ∂Ω, we can find a unique solution uΩ ∈ H1(Ω) to the following
problem

uΩ :

−∆u = µ in Ω

βu+
∂u

∂n
= −1 on Γ.

If uΩ = 0 on Γ then (uΩ,Ω) is a solution for Problem 1.1. Then we define a cost function as follows

J(Ω) =
1

2

∫
Γ

|uΩ|2ds.

We want to minimize J(Ω) among Ω ∈ G. We remark here that (Ω, u) is a solution if and only if
J(Ω) = 0 and u = uΩ.

4 Variation Formula of Cost Function

We use Lagrange multiplier method [5] to derive the variation formula of cost function J(Ω) with
respect to the domain Ω ∈ G. For a vector field V ∈W 1,∞(R2,R2), we define

Ω(t) := {x+ tV(x)
∣∣x ∈ Ω} (0 ≤ t < t0).

Then we introduce an adjoint problem as follows

vΩ :

∆v = 0 in Ω

βv +
∂v

∂n
= −uΩ on Γ.

By using the Lagrange multiplier method and the adjoint problem, under some regularity condi-
tions, we obtain a variation formula of the cost function J(Ω):

d

dt
J(Ω(t))

∣∣∣
t=0

=

∫
Γ

(
(V · n)f + V · ∇g + (Vs · τ)g

)
ds, (11)

where τ is a counter clockwise tangential unit vector on Γ, Vs = ∂V
∂τ , and

f = ∇uΩ · ∇vΩ

g =
1

2
u2

Ω + αuΩvΩ + vΩ.

A proof of (11) will be given in our forthcoming paper.

5 Traction Method

The main idea of traction method is to treat the domain Ω as an elastic body and iterate small
deformation by a boundary traction given by the variational formula of J(Ω). In order to solve
Problem 1.1 using the traction method, we have to solve the following artificial elasticity problem

−div σ[w] = 0 in Ω \D
σ[w]n = −B on Γ

w = 0 on ∂D,

(12)

where w(x) ∈ R2 is a displacement field on Ω̄.
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Figure 8: The initial domain

We put B as boundary force, which is implicitly defined by∫
Γ

B ·V =
d

dt
J(Ω(t)) =

∫
Γ

(
(V · n)f + V · ∇g + (Vs · τ)g

)
ds (∀V ∈W1,∞(R2,R2)).

The complete procedure of solving Problem 1.1 by using the traction method can be summarized
as follows:

1. Define an initial domain Ω as in figure (8) and generate a finite element mesh on Ω.

2. Solve uΩ and vΩ by finite element method.

3. Solve the artificial elasticity problem (12) by finite element method.

4. Modify the domain Ωnew := {x + ηw(x)|x ∈ Ω} for sufficiently small η > 0, together with
the nodal points of the mesh.

5. Repeat step 2-4 until the domain Ω converges.

6 Numerical Examples

To study the efficiency of the traction method, we apply it into a free boundary problem as in
Problem 1.1 with µ as in (4). Figure 9 shows the numerical result of Problem 1.1 with α = 3 and
c = 0.47727 (α/l = π) where we use FreeFem++ [3] for the simulation. We also summarize the
value of the cost function for some iterations in Table 2.

Table 2: Table of the cost function

Iteration 500 1000 1500 2000 2500 2964
Cost function 0.00355... 0.000273... 0.0000541... 0.0000279... 0.0000218... 0.00000513...

From Table 2 we can see that the cost function becomes smaller with more iterations and it is
almost equal to zero (J(Ω) = 0.00000513...) after 2964 iteration.
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(a) (b)

(c) (d)

Figure 9: Numerical result of Problem 1.1 with α = 3 and c = 0.47727 (a) initial domain (b)
iteration 1000 (c) iteration 2000 (d) iteration 2964

Comparing with the exact solution in Figure 6, we can observe that the numerical result after 2964
iteration in Figure 9 gives an accurate solution.

7 Conclusion

This paper has presented a complete construction of exact solutions of a free boundary problem
by means of the conformal mapping based on the paper of A. Henrot [2]. We could classify
all the exact solution into connected/disconnected and convex/non-convex ones and specified the
number of each solutions for the case that µ is the combination of two Dirac function as shown
in Theorem 2.2 and Table 1. The figures of some exact solutions are also presented in this paper
using MATLAB. Hence we can use it as an comparison to the numerical result.

We also solved Problem 1.1 numerically using a shape optimization approach, specifically using
the traction method. First we changed the free boundary problem in Problem 1.1 to a shape
optimization problem as described in section 3. Then we derived the variation formula of the cost
function J(Ω). Under some regularity, the variation formula in (11) could be obtained using the
Lagrange multiplier method and the adjoint problem. The numerical result of Problem 1.1 (where
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µ is a combination of two Dirac function with same coefficient α) for α/l = π obtained by the
traction method was shown in Figure 9. It was observed that by comparing with the exact solution
in Figure 6, the traction method could give the numerical result with good accuracy.
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Abstract. Modeling ocean wave propagation using particle method faces difficulty due to its high
computational cost, especially when it is computed in large domains. By coupling a cheap model
in the large deep sea region and a precise model near the shoreline, we can reduce this difficulty.
There had been already proposed models coupling Navier-Stokes equations with a Boussinesq model.
Herein we propose to couple a finite difference Shallow Water Equation (SWE) model for the deep
sea with a Smoothed Particle Hydrodynamics Navier-Stokes Equation (NSE) model close to the
shoreline where the waves break and overturn. The cheap SWE model represents the large com-
putational domain whereas the NSE model is necessary to deal with the complex behavior of the
free-surface at the shoreline. We present results of simulations of water waves for a flat bottom
and an inclined bottom as a representation of coastal area.

Keywords: Coupled Model, Ocean Wave Propagation, Navier-Stokes Equations, Shallow Wa-
ter Equations, Smoothed Particle Hydrodynamics, Staggered Conservative Scheme

1 Introduction

The study of ocean waves is a very important field, including significant applications in coastal
engineering, such as tsunami and coastal protection. Many models and numerical methods based
on grid and particle approach were proposed to solve ocean wave problems in order to predict the
phenomena and prevent devastation.

However, an accurate simulation of the issues still poses a problem, especially when it is com-
puted in a large domain. Particle-based methods can describe the wave behavior, including complex
aspects such as the free surface at the shoreline where the waves break and overturn. Nevertheless,
these methods still require high computational resources. On the other hand, the computational
cost of grid-based methods is cheaper than that of particle methods, but these methods cannot
handle the above mentioned complex behaviors.

The computational cost problem can be reduced while keeping the quality of the result by
coupling a cheap model for the deep sea with a precise model near the shoreline. The coupled
model has been studied recently by several authors. Coupling smoothed particle hydrodynamics
(SPH) with a 1-D Boussinesq-type wave model was proposed in [1] and [9].

In this research, we propose to couple a finite difference Shallow Water Equation (SWE) model
with a 2-D Smoothed Particle Hydrodynamics Navier-Stokes Equation (NSE) model. The cheap
SWE model represents the large computational domain whereas the NSE model is necessary to deal
with the complex behavior of the free surface at the shoreline. We use a standard SPH formulation
to solve the NSE model and staggered conservative scheme to solve the SWE model.

The purpose of our research is to reduce the computational cost of simulating ocean wave
propagation from deep sea by coupling a finite difference shallow water model with a smoothed
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particle hydrodynamics Navier-Stokes model. We compare the computational cost of the coupled
model with computational cost of the pure Navier-Stokes model.

The outline of this paper is as follows. We introduce our governing equations in section 2.
Discretization of the governing equations is explained in section 3. Section 4 is about the coupled
model, including coupling strategies and algorithm. In the following section, we present numerical
examples of flat and inclined bottom water wave simulations as well as a comparison between the
pure SWE model with the coupled model. We summarize our research in the last section.

2 Governing Equations

2.1 Navier-Stokes Equations

The Navier-Stokes equations (NSE) are the basic governing equations for incompressible fluid flow
over time t, {

∇ · u = 0
ρ
(
∂
∂t + u · ∇

)
u = ∇p+ µ∇ · (∇u) + f ,

(1)

where ρ is the density of the fluid, u is the velocity, p is the pressure, µ is the viscosity, and f is
the total of external forces acting on the fluid.

We consider inviscid fluid (µ = 0) and assume that the external force comes only from gravity.
We solve the governing equations using smoothed particle hydrodynamics, where the fluid is treated
as slightly compressible. In this case we can rewrite the equations (1) as follows{ Dρ

Dt = −ρ∇ · u
Du
Dt = − 1

ρ∇p+ g,
(2)

where D
Dt is the material derivative and g is the gravitational acceleration vector. The equations (2)

are also known as Euler equations.

2.2 Shallow Water Equations

The shallow water equations (SWE) are model of fluid flows below a pressure surface (it can be
a free surface but it is not necessary). The SWE can be derived from the NSE under the main
assumption that the horizontal length scale is much greater than the vertical length scale [6]. As
the sea becomes shallower, the vertical velocity of the fluid particles becomes more and more oval-
shaped and at the shallow sea level the vertical velocity is assumed to be zero. Another assumption
is that the horizontal velocity is homogeneous throughout the whole fluid depth.

We consider one dimensional shallow water equations with no frictional force as follows{
ηt + (hu)x = 0

ut + uux + gηx = 0,
(3)

where η is the fluid level above plane of reference, u is velocity of the fluid, h = d+η is total depth
of the fluid and d is the fluid depth below plane of reference.

The first equation in the equations (3) comes from mass conservation, whereas the second
equation describes momentum conservation.
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3 Numerical Method

3.1 Smoothed Particle Hydrodynamics

Smoothed particle hydrodynamics (SPH) is a particle method based on integral approximation
using a kernel function that approximates the delta function

f(x) =

∫
Ω

f(x′)W (x− x′) dx′, (4)

where x ε Ω,W is a smoothing kernel function with h as width of the kernel (see [2]). The method
was proposed by Lucy, Gingold and Monaghan. At first the method was used for simulating
astrophysical problems [7], [11]. Nowadays SPH is applied in many fields including wave simulation.
The SPH method is convenient for this kind of wave problems since it does not require solving the
free boundary.

The main idea of SPH is to discretize the fluid into a finite number of points that have some phys-
ical field quantities, e.g., mass-density, pressure, etc. [5]. The movement of the points (particles),
depends on its governing equation, i.e., the equations (2). In the SPH method, the approximation
of the governing equations is derived using particle approximation.

Unlike grid-based methods that compute spatial derivatives by taking the difference of values
at neighboring grid points, the SPH method computes influence of all particles over a certain area
depending on the support of the kernel through an integral approximation weighted by the kernel
function.

The choice of the kernel function is important in the SPH method, similarly to the choice of
schemes in finite difference method [5]. Depending on the situation, some kernel functions can be
better than other ones. There are many types of kernel functions but the most common one is the
beta cubic spline kernel

W (x− x′, h) = β


3
2 − q

2 + 1
2q

3 0 ≤ q < 1
1
6 (2− q)3 1 ≤ q < 2

0 otherwise

where q =
|x−x′|
h , 2h is the kernel radius (rkernel). The value of β depends on the dimension of the

problem, in 2-D case β = 15
7πh2 .

To change the integral interpolation into particle approximation, we rewrite the integral (4)
into discrete form as follows

〈f(xi)〉 =

N∑
j=1

f(xj)WijVj ,

where xi represents the position of i-th particle, Vj =
mj

ρj
is the volume corresponding to the

particle j,Wij = W (xi − xj , h), and ρi =
∑N
j=1mjWij . The summation is carried out for all

neighboring particles in the kernel support.
The particle transformation of the NSE equations (2) results in the set of SPH equations as

follows 〈
Dρi
Dt

〉
=

N∑
j=1

mj (ui − uj) · ∇iWij
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〈
Dui
Dt

〉
= −

N∑
j=1

mj

(
pi + pj
ρiρj

+ Πij

)
∇iWij + g,

where Πij is artificial viscosity, which is added in order to achieve numerical stability (see [2], [10]).
We use artificial viscosity in [5] as follows

Πij =

{
−a 1

2 (ci+cj)µij+bµ2
ij

1
2 (ρi+ρj)

if xij · uij<0

0 otherwise

where ci and cj are sound speeds of the particle, a and b are constants (typically b = 0),
uij = (ui − uj) , xij = (xi − xj), and

µij =
huij · xij
x2
ij + (εh)

2

with ε a small number, often taken as 0.1 [8].
To update the pressure of particles, we use equation of state that was proposed by Monaghan

pi = B

((
ρi
ρ0

)γ
− 1

)
,

where γ is a constant, often taken as γ = 7. ρ0 is the reference density. B is a parameter
determining a restriction for the maximum change of density, which is often taken as the initial
pressure [2].

3.2 Staggered Conservative Scheme

We use staggered discretizations for solving the equations (3). The scheme is often used in large-
scale applications due to its advantages, e.g., its efficiency in combination with semi-implicit time
integration (see [3]).

For the discretizations, we follow the ideas in [3] and [4]. In particular, we discrete the time
interval (0, T ) into Nt time steps with length ∆t. The spatial domain Ω := (0, L) is discretized
into Nx cells with length ∆x and partition points

x 1
2

= 0, x1, x 3
2
, ..., xi− 1

2
, xi, xi+ 1

2
, ...xNx+ 1

2
= L

Moreover, we define the depth η at full grid points and the velocity u at half grid points (see Fig.1).
Therefore the total depth of the water h is also defined at the full grid.

Figure 1: Staggered grid discretization scheme
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Applying the scheme to the mass equation of the SWE, we obtain

ηn+1
i − ηni

∆t
= −

(∗hn
i+ 1

2

un
i+ 1

2

−∗ hn
i− 1

2

un
i− 1

2

∆x

)
.

The total depth in the discretization of the mass equation appear at half grid but since we
define them at full grid, we need to interpolate them. Here we denote by ∗h the missing points of
h at half grid.

We approximate the missing points using first-order upwind scheme. Namely, when the wave
comes from the left, we take information from the left side and when the wave comes from the
right we take right-side values:

∗hi+ 1
2
=

 hi if
(
un
i+ 1

2

≥ 0
)

hi+1 if
(
un
i+ 1

2

< 0
)
.

(5)

As for the momentum equation of the SWE, we rewrite the nonlinear part in the equations (3)
as follows

u
∂u

∂x
=

1

h

(
∂
(
hu2

)
∂x

− u∂ (hu)

∂x

)
=

1

h

(
∂ (qu)

∂x
− u∂q

∂x

)
.

Then, the discretization for the momentum equation is given as follows

un+1
i+ 1

2

− un
i+ 1

2

∆t
= − 1

hi+ 1
2

(
qi+1u

∗
i+1 − qiu∗i
∆x

− ui+ 1
2

qi+1 − qi
∆x

)
− g

(
ηn+1
i+1 − η

n+1
i

∆x

)
,

where

hi+ 1
2

=
hi + hi+1

2
, qi =

qi+ 1
2

+ qi− 1
2

2
, qi+ 1

2
=∗ hi+ 1

2
ui+ 1

2

and ∗h satisfies the equation (5). u∗ is the notation for missing points of u on the full grid which
are approximated using first-order upwind scheme as follows

u∗i =

{
ui− 1

2
if ( qi ≥ 0)

ui+ 1
2

if (qi < 0) .

Applying both discretizations of the mass and momentum equations, some oscillations will
appear in the result. We add an artificial diffusion to smooth out the result:

∗ηn+1
i = (1− ε) ηi+0.5ε (ηi−1 + ηi+1) (6)

with ε a smoothing parameter. The equation (6) is also known as first order Shapiro filter [6].

4 Coupled Model

4.1 Coupling Idea

The idea to couple the above two sets of governing equations is done by dividing the domain into
two regions, SWE Region and NSE Region, with a buffer between these two regions [1], [9] (see
Fig.2).
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Figure 2: SWE - NSE coupling scheme

The buffer is a place for transferring information between the models. We still need to consider
the way of selecting the information to be transferred between the models because of the fact that
SWE model provides less information than NSE model.

Basically, we can set the whole computational domain as the SWE region but it will not be
effective. Therefore, we choose the SWE region until near shoreline, so that the length of the region
is larger than that of the NSE region to represent the large computational domain.

As for the NSE region, we set it up to start from close to the shoreline up to the end of the
computational domain in order to deal with the complex behavior of the waves. The selection of
the buffer length will be explained in the next section.

4.2 SWE to NSE Coupling

As we know, the SWE is simplified model so it has less information than the NSE model. We
obtain homogeneous horizontal velocity for all depths at a given position, whereas the NSE model
gives both vertical and horizontal velocity at each point of the domain.

To overcome the lack of information, we insert a wavemaker moving with a velocity given from
the SWE model at the left boundary of the NSE region. The wavemaker is created from particles
placed in a column as shown in Fig.3

Figure 3: SWE to NSE coupling scheme

We impose the same velocity for every particle of the wavemaker since the SWE has homo-
geneous velocity. Moreover, the wavemaker moves only in the horizontal direction with the given
velocity. In this way, the wavemaker will push the fluid particles and the influence of the SWE
will propagate into the NSE through the wavemaker movement. By repeating the process, the
influence will propagate over all of the NSE domain.
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4.3 NSE to SWE Coupling

From the NSE model we obtain all necessary information for the SWE model. The difficulty in the
feedback coupling is in reducing the information when transferring it to the SWE model. Ideally,
we want to preserve mass and momentum. In this research, we do it by reconstructing wave-surface
and averaging velocity over certain columns in the SPH result.

With the explicit staggered scheme, basically we need only data at one point for the feedback
coupling. Hence, we prescribe the SWE boundary condition with the SPH result by taking the
information at the right boundary of the SWE model as shown in the Fig.4

Figure 4: NSE to SWE coupling scheme where both of
−
uNSE and hNSE are computed by averaging particle

horizontal velocity and by taking the maximum height of particles in suitable columns.

The choice of the suitable columns depends on parameters used in the SPH. When choosing
the columns, we have to ensure that there are always particles in the columns. In our case, the

smallest feasible width of the columns was 8∆x, and we compute both
−
uNSE and hNSE over the

columns centered on the boundary as follows

−
uNSE = 1

np

np∑
k=1

u1 (k) ,

hNSE = max
1≤k≤np

y (k)

where np is the number of particles in the column, u1 is the horizontal velocity of the particles,
and y is the vertical position of the particles.

The influence of the NSE model will propagate into the SWE region through the boundary
condition. In the first iteration, the influence is at the boundary and the nearest grid from the
boundary. By repeating the process, the influence will propagate over all of the SWE domain.

4.4 Coupling Algorithm

In the numerical computation, we have to make sure that the parameters of both models match
before start the coupling simulation.

The time step for each model is chosen according to numerical stability requirements. For the
SPH, when considering external force and viscous diffusion, the time step of SPH is chosen as
follows (see [5])

∆tSPH = γmin
i

(∆tf ,∆tcv) ,
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where ∆tf = min
i

(
hi

|fi|

)
, ∆tcv = min

i

 hi

ci+0.6

(
aci+bmax

j
µij

)
, and γ = 0.25 or 0.4.

In [2], the time step is also chosen as the ratio between the smallest length of the kernel function
and the maximum speed of numerical propagation

∆tSPH = min
i

(
hi
c

)
For the SWE staggered scheme, the CFL condition restricts the time step by the condition

∆tSWE

∆x

(√
g∗hn+1

i+ 1
2

+
∣∣∣uni+ 1

2

∣∣∣) ≤ 1,

where ∗h satisfies the equation (5). In particular, these conditions usually mean that the SPH time
step ∆tSPH has to be smaller than the time step for the finite difference method ∆tSWE . In our
computations we put ∆tSPH = 0.5hc and select ∆tSWE as large as possible to save computational
time.

The coupling algorithm is given as follows

Algorithm 1 Coupled the SWE - NSE algorithm

1: Input values of parameters and initial conditions for both models
2: for n = 1 . . . Nmax do
3: t = n∆tSWE

4: Solve the SWE region
5: Get velocity from SWE model at the SPH boundary
6: for j = 1 . . . N(N = ∆tSWE/∆tSPH) do
7: Update position of wavemaker
8: Solve the NSE region

9: Set boundary conditions for the SWE model as in section 4.3

5 Result and Discussion

As a numerical example, we simulated water waves on flat and inclined bottoms. The inclined
bottom simulation represents coastal area. In this section, we also provide a validation of our
model. We assume that the buffer length is large enough to prevent the wavemaker from going
out of the buffer. In this simulation, we set the domain for the SWE region, buffer, and the NSE
region as follows

ΩSWE := [0, 25],Ωbuffer := [20, 25],ΩNSE := [20, 29].

Further, we set the constant of artificial viscosity a = 0.03, g = 9.81, ∆x = hkernel

0.9 and ∆tSPH =
1
3∆tSWE . These parameters are used for all cases of our numerical example.

5.1 Model Validation

First, we check the coupling idea by comparing the coupled SWE - SWE model with the pure
SWE model. We divide the domain into two regions with a buffer for the coupled model and at
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the buffer we transfer both depth and velocity between the models in the same way as in Algorithm
1. The results show that the coupled model and the pure model coincide, as expected.

We adopt our method to compare the coupled SWE - NSE model with pure SWE model. The
results are shown in Fig.5.

Figure 5: Comparison between the coupled model and the pure SWE model with hkernel = 0.0575.

It is natural that result of the coupled model is different from the pure SWE model since the
models are different. However, we can see that the influence of propagation among the models
shifts smoothly and the waves resulting from the coupled model and the pure SWE model almost
match within the buffer. Therefore, we may say that the result is good.

It is hard to say whether the coupling idea for the SWE - NSE model is correct or not, based
only on the comparison method. In order to fully validate the model, it is necessary to compare
its results with experimental data. In such a case, we need two-dimensional model for the SWE
and three-dimensional model for the NSE.

5.2 Flat Bottom Water Waves Simulation

First, we set hkernel = 0.0270588, obtaining the result shown in Fig.6.
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Figure 6: Wave propagation of coupled model at t = 0, 3.49, 5.24, 6.98, 8.73, 12.23.

Next, we increase the number of particles two times, which gives a radius of kernel function
0.714 times smaller than in the previous example. The result is shown in Fig.7.

Figure 7: Wave propagation of coupled model with doubled number of particles (at the same time instants
as above).
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Decreasing the number of particles four times, the length of the kernel increases two times
compared to the first case. The corresponding result is shown in Fig.8.

Figure 8: Wave propagation of coupled model with four times smaller number of particles (at the same
time instants as above).

As we can see, the results in Fig.6, Fig.7, and Fig.8 do not essentially differ although the
resolution of the SPH model was significantly changed. This confirms the correctness of the
numerical results.

5.3 Inclined Bottom Water Waves Simulation

For the water wave simulation over inclined bottom, we use the same parameters as in the previous
simulation with hkernel = 0.046. The inclination starts from 26.05 with slope 1

3 . The results are
shown in Fig.9.
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Figure 9: Wave propagation of coupled model at t = 0, 5.05, 7.42, 8.91, 11.88, 14.85.

6 Summary

We have presented coupled model between a finite difference Shallow Water Equation (SWE) model
and a 2-D Smoothed Particle Hydrodynamics Navier-Stokes Equation (NSE) model. The coupling
strategy for SWE to NSE is done by inserting a wavemaker that moves horizontally with velocity
given from Shallow Water model. The NSE to SWE coupling is done by reconstructing the wave
surface and by averaging velocity over certain columns in the SPH result. The computational
speed for the case in Fig.8 was 2.37 times faster than for the pure NSE model, but it is expected
to be much more effective for large SWE domains.

Coupling idea with inserting a wavemaker is intuitive. However, in real phenomena there is
no such wavemaker that pushes water, therefore the authors would like to consider a more refined
coupling idea mentioned in [1] that uses inlet/outlet boundary condition for the SPH method at
the buffer for coupling from the SWE to the NSE. We keep this improvement as a future goal.

Acknowledgment

I would like to thank Prof. Karel Svadlenka for helpful discussions, support and guidance during
the study.
I would like to thank Prof. Seiro Omata and Prof. Norbert Pozar for helpful discussions.
The work of the author was supported by Japan Student Services Organization (JASSO) Student
Exchange Support Program.

67



ISCS 2015 Selected Papers ShallowWater - Navier-Stokes Coupling Method in Ocean Wave Propagation

References

[1] Christophe Kassiotis, Martin Ferrand, Damien Violeau, Benedict D. Rogers, Peter K. Stansby,
and Michel Benoit (2011). Coupling SPH with a 1-D Boussinesq-type wave model, 6th Inter-
national SPHERIC Workshop, Hamburg, Germany, 241 - 247.

[2] G.R. Liu and M.B. Liu (2003). Smoothed particle hydrodynamics, a meshfree particle method.
World Scientific Publishing, Singapore.

[3] G. S. Stelling and S. P. A. Duinmeijer (2003). A staggered conservative scheme for every
Froude number in rapidly varied shallow water flows. Int. J. Numer. Meth. Fluids, 43, 1329
– 1354.

[4] G. Stelling and M. Zijlema (2003). An accurate and efficient finite-difference algorithm for
non-hydrostatic free-surface flow with application to wave propagation. Int. J. Numer. Meth.
Fluids, 43, 1 – 23.

[5] J.J. Monaghan (1992). Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys., 30,
543 – 574.
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Abstract. We consider the Tutte polynomial for the graph associated to the (2, 2k + 1) torus and
twist knot. Up to a sign and multiplication by a power of t the Jones polynomial VL(t) of an al-
ternating link L is equal to the Tutte polynomial χ(G;−t,−t−1 ). Therefore, the Jones polynomial
could be calculated by using the Tutte polynomial for (2, 2k + 1) torus and twist knot. The Jones
polynomial has a vanishing term if the knot is a (2, 2k + 1) torus knot, but there is no vanishing
term if the knot is a twist knot. We look for graphs which the associated with 3-tuple of pretzel
link have non-vanishing terms in the Jones polynomial. The term Jones polynomial is proven to
be non-vanishing by calculated the Tutte polynomial of the given graph.

Keywords: Graph theory, knot theory, the Tutte polynomial, the Jones polynomial

1 Introduction

A link is a finite family of disjoint, smooth, oriented or unoriented, closed curves in R3 or equiva-
lently S3. A knot is a link with one component. Suppose L be an unoriented link, w(L) denotes
the writhe of L. We define the normalized bracket polynomial X(L) = (−A3)−w(L)

〈
L
〉
. Then, we

have the Jones polynomial

VL(t) = (−A3)−w(L)
〈
L
〉∣∣∣∣

A=t−
1
4

∈ Z[t
1
2 , t−

1
2 ] (1)

The torus knot T (2, 2k + 1)

Figure 1: The (2, 2k + 1) torus knot, k = 1, 2, . . .

Let Gk be the medial graph of T (2, 2k + 1) (Fig. 2).

The Jones polynomial of T (2, 2k − 1)

VT (2,2k+1) = tk +
2k∑
i=1

(−1)i+1ti+k+1 (2)
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Figure 2: Medial graph of T (2, 2k + 1).

The Jones polynomial of these knot are alternating and has zero coefficient at tk+1. For example:

k = 1⇒ VT (2,3)(t) = − t4 + t3 + t

k = 2⇒ VT (2,5)(t) = − t7 + t6 − t5 + t4 + t2

k = 3⇒ VT (2,7)(t) = − t10 + t9 − t8 + t7 − t6 + t5 + t3

In this paper, we construct the Jones polynomial of an alternating knot which all coefficients are
non-zero. We will briefly review the standard theory of the Tutte polynomial and the connection
between the Tutte polynomial and the Jones polynomial.

2 Graph Theory

A graph G = (V (G), E(G)) or G = (V,E) consists of two finite sets. V (G) or V is the non-empty
vertex set of the graph called vertices and E(G) or E is the edge set of the graph called edges, such
that each edge e in E is assigned as an unordered pair of vertices (u, v) called the end vertices of
e. A path is a sequence of edges which connect a sequence of vertices which are all distinct from
one another. A cycle of a graph G is a subset of the edge set of G that forms a path such that the
first node of the path corresponds to the last. An isthmus or a bridge is an edge of graph if and
only if it is not contained any cycle. A loop is an edge that connects a vertex to itself.

3 The Tutte Polynomial by Deletion-Contraction

Consider the following recursive definition of the function χG(x, y) of a graph G, x, y are indepen-
dent variables. Then Tutte polynomal is defined by:

χ(G;x, y) =


1 if E(G) = ∅
xχ(G′e;x, y) if e ∈ E and e is an isthmus

yχ(G′′e ;x, y) if e ∈ E and e is a loop

χ(G;x, y) = χG′e(x, y) + χG′′e (x, y) if e is neither a loop nor an isthmus

where G′e denotes the deletion by an edge e of graph G and G′′e denotes the contraction by an edge
e of graph G.
Example. If G is a complete graph K3, then

χ(K3;x, y) = x2 + x+ y
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Figure 3: An example of computing the Tutte polynomial of a graph by using deletion and contraction.

Theorem 1. (Thistlethwaite [4]) Suppose φ(t) be a sign and multiplication by power of t,
Let L be an unoriented link and G be a planar graph associated with L.
Then, VL(t) = φ(t)χ(G;−t,−t−1)
Example. Let K be a trefoil knot, G is a medial graph of knot K.

χ(G;x, y) = x2 + x+ y

χ(G;−t,−t−1) = t2 − t− t−1

VK(t) = t+ t3 − t4

VK(t) = (−t2)χ(G;−t,−t−1)

Figure 4: Trefoil knot with its medial graph.

4 The Jones Polynomial of 3-Tuple Pretzel Link

Let G(p,q,r) be a connected planar graph with three number of faces. p, q, and r are the number of
vertices of graph G(p,q,r) (Fig. 5). The graph G(p,q,r) is associated with 3-tuple pretzel link.
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Figure 5: Graph G(p,q,r) with three number of faces f1, f2, and f3

We have the Tutte polynomial of G(p,q,r)

χ(G(p,q,r);x, y) = (y− 1)2 + (y− 1)

p∑
i=0

xi +

q∑
j=0

xj
(
y− 1 +

p∑
i=0

xi
)

+
r∑

k=0

(
xky+

q+p∑
l=0

xk+l+1

)
(3)

By changing variable x = −t and y = −t−1 from (3) we get

χ(G(p,q,r);−t,−t−1) = t−2 + 2t−1 + 1 + (−t−1 − 1)

p∑
i=0

(−t)i

+

q∑
j=0

(−t)j
(
− t−1 − 1 +

p∑
i=0

(−t)i
)

+

r∑
k=0

(
(−t)k−1 +

q+p∑
l=0

(−t)k+l+1

)
(4)

We simplify the Tutte polynomial of (−t,−t−1) of graph G(p,q,r)

χ(G(p,q,r);−t,−t−1) =
1

t2(t+ 1)2

× [1 + t+ {2− (−t)p − (−t)q − (−t)r} t2

+ {1− (−t)p − (−t)q − (−t)r} t3

+ {1− (−t)p − (−t)q − (−t)r} t4

+ (−t)p+q+r+5]

(5)

So by theorem 1 we get the Jones polynomial of link associated with graph G(p,q,r)

VL(t) =
φ(t)

t2(t+ 1)2

× [1 + t+ {2− (−t)p − (−t)q − (−t)r} t2

+ {1− (−t)p − (−t)q − (−t)r} t3

+ {1− (−t)p − (−t)q − (−t)r} t4

+ (−t)p+q+r+5]

(6)

Where φ = (−t 3
4 )w(t−

1
4 (p+q+r−1)) [3]
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5 Statement of Results

Theorem 2. All coefficients in χ(G;−t,−t−1) are non-zero

Proof. Let
n∑
i

(−1)iait
i be a Laurent polynomial with alternating sign and non-vanishing term

(ai 6= 0).

Consider
n∑
i

(−1)iait
i
m∑
i

(−1)ibit
i =

m+n∑
i

(−1)icit
i and

m∑
i

n∑
i

(−1)iait
i =

m+n∑
i

(−1)idit
i.

By using the symmetricity of Tutte polynomial, we will show all coefficients of the polynomial with
alternating sign in (4) are non-zero if at least p, q, r is greater than zero, assume that p ≤ q ≤ r.
Let r > 0, we get the Tutte polynomial of (−t,−t−1) for graph G(p,q,r)

χ(G(p,q,r);−t,−t−1) = t−2 + 2t−1 + 1 + (−t−1 − 1)

p∑
i=0

(−t)i

+

q∑
j=0

(−t)j
(
− t−1 − 1 +

p∑
i=0

(−t)i
)

+
r∑

k=0

(
(−t)k−1 +

q+p∑
l=0

(−t)k+l+1

)

= t−2 + 1︸ ︷︷ ︸
A

+

p−1∑
i=0

(−t)i +

q−1∑
i=0

(−t)i

+

q∑
j=1

(−t)j
p∑

i=1

(−t)i +
r∑

k=0

(−t)k−1︸ ︷︷ ︸
Br

+
r∑

k=0

q+p∑
l=0

(−t)k+l+1

︸ ︷︷ ︸
Cp,q,r

A = t−2 + 1

Br = − t−1 + 1− t+ t2 − t3+ · · ·+ (−t)r−1

Cp,q,r = − t+ t2 − t3+ · · ·+ (−t)q+p+1

+ t2 − t3 + t4 + · · ·+ (−t)q+p+2

− t3 + t4 − t5+ · · ·+ (−t)q+p+3

+(−t)r+1 + (−t)r+2 + (−t)r+3+ · · ·+(−t)r+q+p+1

All coefficients of polynomial terms A + Br + Cp,q,r are non-zero. Define deg− be the low-
est degree of its terms. Then, deg−

(
χ(G(p,q,r);−t,−t−1)

)
= deg− (A+Br + Cp,q,r) = −2 and

deg
(
χ(G(p,q,r);−t,−t−1)

)
= deg (A+Br + Cp,q,r) = r + q + p + 1. Therefore, all coefficients of

polynomial χ(G(p,q,r);−t,−t−1) are non-zero.�
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Corollary 1. All coefficients in the Jones polynomial of 3-tuple of pretzel link are non-zero.
Proof. Let L be a 3-tuple of pretzel link.

Consider χ(G(p,q,r);−t,−t−1) =
r+q+p+1∑

i=−2
(−1)iait

i be the Tutte polynomial with alternating sign

and non-vanishing term (ai 6= 0).
Let φ(t) = (−1)htk be a sign and multiplication by power of t.

Since VL(t) = φ(t)χ(G(p,q,r);−t,−t−1) = (−1)htk
r+q+p+1∑

i=−2
(−1)iait

i =
r+q+p+1∑

i=−2
(−1)h+iait

k+i.

Therefore, all coefficients of VL(t) are non-zero.�
Corollary 2. All coefficients in the Jones polynomial of n-tuple pretzel link are non-zero.
Proof. Let P (c1, c2, . . . , cn) be a pretzel link determined an n-tuple, G(c1, c2, . . . , cn) is a graph
associated with P (c1, c2, . . . , cn). Choose p, q, r as the first three largest number of c1, c2, . . . , cn
where p ≤ q ≤ r. Then we say that, all coefficients in χ(G(c1,c2,...,cn);−t,−t−1) are non-zero with
deg{χ(G(c1,c2,...,cn);−t,−t−1)} = m = r + q + p+ 1.

Let φ(t) = (−1)htk be a sign and multiplication by power of t.

Since VP (c1,c2,...,cn)(t) = φ(t)χ(G(c1,c2,...,cn);−t,−t−1) = (−1)htk
m∑

i=−2
(−1)iait

i =
m∑

i=−2
(−1)h+iait

k+i.

Therefore, all coefficients of VP (c1,c2,...,cn)(t) are non-zero.�
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New Sliding Puzzle with Neighbors Swap Motion
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Abstract. The sliding puzzles (15-puzzle, 8-puzzle, 5-puzzle) are known to have 2 kind of puz-
zle: solvable puzzle and unsolvable puzzle. In this thesis, we make a new puzzle with only 1 kind
of it, solvable puzzle. This new puzzle is made by adopting sliding puzzle with several additional
rules from M13 puzzle; the puzzle that is formed form The Mathieu group M13. This puzzle has a
movement that called a neighbors swap motion, a rule of movement that enables every neighboring
points to swap. This extra rule make of new puzzle become possible to be solved, whatever the initial
state is.

Keywords: sliding puzzle, 15-puzzle, 8-puzzle, 5-puzzle, M13 puzzle, neighbors swap motion.

1 Introduction

Sliding puzzle is a puzzle that challenges a player to slide on at pieces along certain routes (usually
on a board) to establish a certain end-configuration. Unlike other tour puzzles, a sliding puzzle
prohibits lifting any pieces on the board. This property distinguish sliding puzzles from rearrange-
ment puzzles. Hence, finding the movements and the paths open up by each movement within the
two-dimensional connes of the board are important parts of solving sliding block puzzles.

Figure 1: Example of Sliding puzzle (3x3 Sliding Puzzle)

2 15-puzzle

Based on the book written by Edward Hordern in 1986 [4], there is a kind of sliding puzzle that
is well known as 15-puzzle. It is a 4x4 square that consists of 15 square tiles in random order and
one missing tile. These tiles are numbered from 1 until 15 definitely.

The objective of this game is to set the random tiles to be arranged order by sliding the tiles
using the empty space. It is prohibited to lift the tiles, of course. At the end, we will obtain the
arrangement of the puzzle with tiles numbered by 1-4 in the first row, 5-8 in the second row, 9-12
in the third row, and 13-15 in the last row added by the empty space.
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Generally, there are two type of this puzzle: solvable 15-puzzle and unsolvable 15-puzzle. The
unsolvable puzzle is puzzle that have a state that cannot be solved whatever we slide it. Johnson
(1879), Story (1879), and Archer (1999) said that the 15-puzzle have state or condition that is
impossible to solve. Therefore not all of 15-puzzle can arranged.

Figure 2: Example of 15-puzzle

3 8-puzzle and 5-puzzle

This sliding puzzle also exists in other size, particularly smaller 8-puzzle and 5-puzzle. Noyes
Palmer Chapman is the one who invented and popularized this size of puzzle in 1870s. Similarly
with the 15-puzzle, it is also played on a square that consists of some tiles and an empty space,
but the size is only 3x3 for 8-puzzle and 2x3 for 5-puzzle. With the purpose of how to solve and
the rules are, we have to arrange the tiles by sliding it horizontally or vertically without lifting the
tiles, so that they are well ordered (ascending ordered).

Generally, there are two type of this puzzle: solvable puzzle and unsolvable puzzle like 15-puzzle

Figure 3: Example of 8-puzzle and 5-puzzle

4 M13 Puzzle

M13 puzzle is a puzzle that formed form The Mathieu group M13.
M13 consists of the permutations of counters that can be obtained by composing finite sequence

of moves. This is not a group, since we can only compose two moves if the point left empty after
carrying out the first move is the empty point at the start of the second move. More precisely:
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the objects of M13 are the 13 positions of the point that’s left empty. The morphisms are the
permutations of counters that arise from finite sequences of compostable moves.

In How to Play M13 by Sebastian Egner and Thomas Beth [3], The Puzzle can be shown as this
Figure. The image represent a projective geometry that basic of the M13 puzzle. The projective
geometry can be thought as the set of one dimensional subspaces of the three dimensional space
F3. A points in this geometry are thirteen one-dimensional subspaces, it indicated by red dot. In
addition, the lines at this geometry are thirteen two-dimensional subspaces, it is represented by
black triangle. The connection between red dot and triangle is incidence. The red dot is adjacent
with triangle if the point is incident to the line.

Figure 4: Example of 8-puzzle and 5-puzzle

The puzzle is constructed by putting number 1 until 12 to red dots. The last red dot that
doesn’t have number called a hole. The basic movement in this puzzle are: 1. Pick a number
between 1 and 12, so there is a shortest path to move a number to hole. The path consist one
triangle and 2 lines that connect them. so the last state is the picked number became hole and
hole became a number that picked before. 2. Exchange the number except a picked number and
hole that adjacent to the triangle in the path(from step 1). This movement is called a neighbors
swap motion.

The rule in swap motion from M13 puzzle swap the adjacency point after we move the target
point to the hole. In the M13 puzzle we use connectivity between point an triangle, In 8-puzzle
and 5-puzzle we use the adjacency between cell.

5 The New 8-puzzle and 5-puzzle

From neighbors swap motion in M13 puzzle we can make a new rule with same idea. The idea is a
movement that consider with the adjacent with neighbourhood. In this puzzle the rule is adding
some extra movement when we slide one of cell.

Assume we move the target cell to empty cell. The movement of new rule is if the number of
the cell that is adjacent to the target is 2, the extra movement is swapping between 2 of adjacent
cell.

Because 8-puzzle has one more possibilities about number of adjacent cell. Assume we move
the target cell to empty cell. The new rule for 8-puzzle become:

1. If the number of the cell that adjacent to the target is 2, the extra movement is swapping
between 2 of adjacent cell.

2. If the number of the box that adjacent to the target is 3, the extra movement is swapping
only cell that not same row or same column with target cell.
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Figure 5: Example of 5-puzzle

Figure 6: Example of 8-puzzle

6 Solvability of New Puzzle

These new puzzles (new 5-puzzle and new 8-puzzle) can be represented in graph theory as set of
vertices and edges. The vertices is a every state of the puzzle (every permutation of the {1,2,3,4,5,0}
for 5-puzzle and {1,2,3,4,5,6,7,0} for 8-puzzle) and the edges is the possibilities of the change of
the state if we move the hole (0).

Definition 6.1 G5 = (V5, E5) is a graph with:

1. V5 := Vertices that represent a state of 5-puzzle,

2. E5 := Edges that represent possibility between two state.

Definition 6.2 G5 = (V8, E8) is a graph with:

1. V8 := Vertices that represent a state of 8-puzzle,

2. E8 := Edges that represent possibility between two state.

With this graph we can find there a possible path between every state. This path indicate there
exist a movement/s that makes a state became other state. In other word we can find a possibility
path from every state to solved state (state when we finished the puzzle). If there exist that path,
we can say that state can be solved.

6.1 Solvability of new 5-puzzle

With definition above we get |V5| = 720 and |E| = 1680. And with Breadth-first Search (BFS),
we can find path of every state that connect it to solved state. The result is G5 has 720 vertices
that have path to solved state. That means every state can be a solve state. In other word we can
solve all of new 5-puzzle. Therefore new 5-puzzle didn’t have a unsolvable state.
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6.2 Solvability of new 8-puzzle

Theorem 6.1 Every two adjacent cell in new 8-puzzle can be exchanged.

Let G8 is a graph representation of state of 8-puzzle. The existence of path in G8 from vertex v1
to v2 means the possibilities movement that can change the state of puzzle that is represented by
v1 to state that is represented by v2. If the path exist then the movement that can change that
state also exists.

Pick 2 cell in 8-puzzle. We will find whether the cell can exchange without change the position
of the other cell. 2 cell can exchange if there exists a movement that change the state from original
to exchanged state (only 2 cell are changed) or in other words there exists a path from original
state vertex to exchanged state vertex. With BFS we can get path that connects that vertices.
Because there exist a path for all case so every two adjacent cell in new 8-puzzle can be exchanged.

Theorem 6.2 Every state of puzzle can be solved.

Because every two adjacent cell in puzzle can be exchanged, we can exchange any two cells in
this puzzle. Therefore we can make a solved state from any state of puzzle.

7 Summary

The regular 5-puzzle and 8-puzzle have 2 types of puzzle: solvable puzzle and unsolvable puzzle.
With the rule/movement from M13 puzzle (Neighbors swap motion) we can make new 5-puzzle
and new 8-puzzle. These puzzles only have one type of puzzle, solvable puzzle.
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Abstract. BCH codes are subclass of cyclic codes with strong properties and have been known
for years. In 1994, Chen, Reed, Helleseth, and Truong proposed a decoding procedure for t-error-
correcting codes via CRHT syndrome variety using computation of lexicographical Gröbner bases
of the ideal. In 2005, Orsini and Sala added polynomial χl,l̃, 1 ≤ l < l̃ ≤ t, to a system of algebraic
equations I to make sure that the position of any two errors are distinct or at least one of them
is zero. In 2014, Takuya Fushisato proposed a modified system J to solve 2-error-correcting BCH
codes problem. Here the polynomial τj ∈ J is a divisor of σj and contain all possible syndromes
of type 0, αi1 , αi1 + αi2 ∈ Fqm as roots. Generally, τj may be regarded as the minimal polynomial
of the roots. In this paper, Fushisato’s system is generalized into K in which Ωj ∈ K contains all
possible roots of t-error-correcting BCH codes in the set Sol ⊆ Fqm . Using the system of polyno-
mials K, the general error locator polynomials of 3-error-correcting codes could be computed and
the computation time of some codes were reduced.

Keywords: BCH codes, t-error-correcting codes, CRHT syndrome variety

1 Introduction

Communication is one of essential components of human beings. The main purpose of a commu-
nication system is to deliver any messages effectively from sender to receiver. In a communication
system, there are many possibilities that there will be errors due to communication channel. To
overcome these problems, researchers develop a field of study named coding theory. In general,
coding theory deals with the construction of strong codes with good encoding and decoding proce-
dures. Some codes with strong properties are called BCH codes. BCH codes are subclass of cyclic
codes in which many algebraic tools can be applied.

Let Fqm be the splitting field of xn − 1 over Fq. Let α ∈ Fqm be a primitive nth root of unity
such that

n−1∏
i=0

(x− αi) = xn − 1.

A BCH code C can be seen as Fq-kernel of parity-check matrix

H =


1 αi1 α2i1 . . . α(n−1)i1

1 αi2 α2i2 . . . α(n−1)i2

...
...

...
. . .

...
1 αir α2ir . . . α(n−1)ir

 .
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Assume that there are errors in the transmission. The errors are collected in an error vector

~e = (e0 . . . en−1) = (0 . . . 0︸ ︷︷ ︸
k1−1

a1
↑
k1

0 . . . 0al
↑
kl

0 . . . 0at
↑
kt

0 . . . 0︸ ︷︷ ︸
n−kt−1

)

where t is the maximum number of errors, k1, . . . , kt denote the error location and a1, . . . , at denote
the error value. Then the syndrome vector can be computed by multiplying parity-check matrix
H with the transpose of error vector ~eT . That is, ~sT = H~eT . Every entry sj of ~sT can be written
in following equation,

t∑
l=1

al(α
ij )

kl − sj = 0, 1 ≤ j ≤ r (1)

To correct errors in a received message, equation 1 needs to be solved. The following notations
will be used from now on. Let X = (x1 . . . xr) be the syndrome vector ~s, Z = (zt . . . z1) be the
vector which each entries zl denotes the error location αkl or zero since there is a possibility that
only µ ≤ t errors occur (µ is the exact weight of error vectors ~e), and Y = (y1 . . . yt) be the vector
which each entries denotes the error values corresponding to the error locations.

By using X, Y , and Z, equation 1 could be rewritten as

fj :

t∑
l=1

ylz
ij
l − xj = 0, 1 ≤ j ≤ r (2)

In this case, the range of all possible solution is very huge. But from the definitions of errors and
syndromes, several equations can be added to restrict the range of the solutions. Chen, Reed,
Helleseth, and Truong add following equations to restrict equation 2.

σj : xq
m

j − xj = 0, 1 ≤ j ≤ r since xj ∈ Fqm , (3)

ηi : zn+1
i − zi = 0, 1 ≤ i ≤ t since (αij )

kl
are either nth roots of unity or zero, (4)

λi : yq−1i − 1 = 0, 1 ≤ i ≤ t since al ∈ Fq \ {0}. (5)

Equations 2, 3, 4, and 5 are collected in system F = {fj , σj , ηi, λi | 1 ≤ j ≤ r, 1 ≤ i ≤ t}. The
variety defined by F is then called as CRHT syndrome variety.

The Gröbner bases that is obtained by computing F with respect to a lexicographic ordering
probably contains a general error locator polynomial L(z) =

∏µ
l=1(z − αkl) of any BCH codes.

This research is focused on building system related to F in order to compute the general error
locator polynomial of BCH codes.

2 Orsini-Sala’s system

The locations and values of errors in a message can be computed using CRHT syndrome variety.
However, the system does not guarantee that every error location is distinct. Therefore, Orsini
and Sala add other equation to fix this problem. The equation is of the form,

χl,l̃ : zlzl̃p(n, zl, zl̃) = 0, 1 ≤ l < l̃ ≤ t (6)

Equation 6, together with equations in F then generate the ideal

I =
〈
fj , σj , ηi, λi, χl,l̃

∣∣∣ 1 ≤ j ≤ r, 1 ≤ i ≤ t, 1 ≤ l < l̃ ≤ t
〉
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which is used to compute the Gröbner bases to find the general error locator polynomial. Suppose
that GI is the reduced Gröbner bases of ideal I with respect to lexicographic ordering, then the
polynomial Lz(X, zt) ∈ GI is the general error locator polynomial of code C and is obtained by
using Orsini-Sala’s system I.

The following algorithm is developed by Orsini and Sala to compute error locations by sub-
stituting syndrome ~s to general error locator polynomial Lz(X, zt) ∈ GI and is used to decode
messages in the later system.

Algorithm 1 Orsini-Sala decoding algorithm

Input: ~s = (s1 . . . sr) and Lz(X, zt) =
t−1∑
i=0

ai(X)zit + ztt ∈ G

µ← t
while at−µ(~s) = 0 do

µ← µ− 1
end while

Output: µ and Lz(~s, zt)/(z
t−µ
t )

Note that the algorithm above is used to decode a code after it’s general error locator polynomial
is found. The general error locator polynomial is computed in the preprocessing of Orsini-Sala’s
method and is the main object in this research.

3 Fushisato’s system

General error locator polynomial of any BCH code C can be computed using Orsini-Sala’s system
I. However, the complexity of the computation of the Gröbner bases of any system depends on the
degrees of polynomials in the system. Thus, it follows that the computation time of the Gröbner
bases of Orsini-Sala’s system increases exponentially due to σj .

Modifying σj in Orsini-Sala’s system becomes the main problem in order to reduce the amount
of computation time since σj has the greatest degree among polynomials in the system. It is known
that polynomials having syndromes of type 0, αi, αi + αj ∈ Fqm are sufficient to correct errors in
2-error-correcting codes. To build polynomial with lower degree than σj , Fushisato proposes to
utilize the minimal polynomials mα(x) of every syndromes 0, αi, αi + αj ∈ Fqm . That is to take
least common multiple of all minimal polynomials of 0, αi, αi + αj ∈ Fqm . Denote the polynomial
by τj , then it can be written as

τj : lcm
{
mα(xj) | α ∈

{
0, αi1 , αi1 + αi2

}
⊆ Fqm

}
= 0

Denote Fushisato’s system formed by changing σj to τj by

J =
〈
fj , τj , ηi, λi, χl,l̃

∣∣∣ 1 ≤ j ≤ r, 1 ≤ i ≤ t, 1 ≤ l < l̃ ≤ t
〉
.

Theorem 3.1. The reduced Gröbner bases GJ of J with respect to a lexicographical ordering in-
cludes a general error locator polynomial for a 2-error-correcting BCH code C.

Proof. By using theorem 6.8 in [4], simply take Lz = g221(X, z) ∈ GJ as the general error locator
polynomial where g221(X, z) is a polynomial in GJ with leading term Lt(g221) = z22 and leading
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coefficient Lc(g221) = 1 since it satisfies the definition of general error locator polynomial.

Note that Fushisato’s system only works on 2-error-correcting codes.

4 t-error syndrome system

Recall the definition of errors and syndromes. Here is a solution set Sol considered as a set
containing syndromes associated to errors. Based on the definition, the following statements must
be satisfied.

1. If there are no errors, then 0 ∈ Fqm must be in Sol.

2. If there is 1 error occurs, then Sol must contain syndromes of type αi1 ∈ Fqm .

3. If there are 2 error occur, then Sol must contain syndromes of type αi1 + αi2 ∈ Fqm .

4. If there are 3 error occur, then Sol must contain syndromes of type αi1 + αi2 + αi3 ∈ Fqm .

5. If there are l error occur, then Sol must contain syndromes of type
l∑

j=1

αij ∈ Fqm .

Since t-error-correcting code means that it can correct up to t errors, it can be concluded that for
any t-error-correcting code, the set of all possible syndromes Sol can be written as

Sol = {0}
t⋃
l=1


l∑

j=1

αij

∣∣∣∣∣∣ 0 ≤ i1 < i2 < · · · < il ≤ n− 1

 ⊆ Fqm

Definition 4.1. Let mα(x) be the minimal polynomial of a primitive nth root of unity α. For
any t-error-correcting BCH code C, the polynomial with minimum degree containing all possible
syndromes for the code in Sol is defined by

Ωj : lcm {mα(xj) | α ∈ Sol ⊆ Fqm} = 0

The polynomial Ωj defined in definition 4.1 can be written in simpler form

Ωj :
∏
α∈Sol

(x− α) = 0

so that it will be easier to compute.

Definition 4.2. The modified system of t-error-correcting codes formed by changing σj ∈ I to Ωj
is called t-error syndrome ideal and defined by

K =
〈
fj ,Ωj , ηi, λi, χl,l̃

∣∣∣ 1 ≤ j ≤ r, 1 ≤ i ≤ t, 1 ≤ l < l̃ ≤ t
〉
.

Theorem 4.3. The reduced Gröbner bases GK of K with respect to a lexicographical ordering
includes a general error locator polynomial for a t-error-correcting BCH code C.

Proof. By using theorem 6.8 in [4], simply take Lz = gtt1(X, z) ∈ GK as the general error locator
polynomial where gtt1(X, z) is a polynomial in GK with leading term Lt(gtt1) = ztt and leading
coefficient Lc(gtt1) = 1 since it satisfies the definition of general error locator polynomial.
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5 Computation results

Below are the results computed for some 3-error-correcting BCH codes using computer algebraic
system Risa/Asir.

1. n = 19,m = 18, SC = {1},

• Orsini-Sala’s system I:

– σj : x262144j − xj = 0,

– GB computation time: 26.1458 seconds,

• Modified system K:

– Ωj : x1160j + x1122j + x1008j + x970j + x856j + x818j + x780j + x742j + x704j + x666j + x628j +

x590j + x552j + x514j + x476j + x457j + x438j + x419j + x324j + x305j + x286j + x248j + x229j +

x172j + x153j + x39j + x20j + xj = 0,

– GB computation time: 1.18 seconds,

• general error locator polynomial :
Lz = z33 + x1z

2
3 + (x11421 + x11041 + x10661 + x10091 + x9901 + x9521 + x9331 + x9141 + x8761 +

x8571 +x8001 +x7811 +x7241 +x7051 +x6481 +x6291 +x5721 +x5531 +x4961 +x4771 +x4391 +x4201 +
x3821 + x3631 + x3251 + x2871 + x2681 + x2301 + x1921 + x1541 + x1161 + x21)z3 + x11431 + x11051 +
x10671 +x9911 +x9531 +x9151 +x8771 +x8201 +x8011 +x7441 +x7251 +x6681 +x6491 +x5921 +x5731 +
x5161 + x4971 + x4211 + x4021 + x3831 + x3071 + x2881 + x2691 + x2121 + x1171 + x981 + x791 + x601 .

2. n = 37,m = 36, SC = {1},

• Orsini-Sala’s system I:

– deg (σj) = 68719476736,

– GB computation time: almost impossible to compute the Gröbner bases of this
system,

• Modified system K:

– deg (Ωj) = 8474,

– GB computation time: 216.644 seconds,

• general error locator polynomial :
Lz = z33 + x1z

2
3 + (x84381 + x84011 + x83641 + x82531 + x82161 + x81791 + x80681 + x80311 + x79941 +

x79201 +x78831 +x77351 +x76981 +x76611 +x75501 +x73651 +x72911 +x70691 +x70321 +x69951 +x69581 +
x68471 +x68101 +x67361 +x65511 +x64401 +x64031 +x63661 +x62551 +x61811 +x61071 +x60701 +x60331 +
x59961 +x59221 +x58481 +x57741 +x57001 +x55521 +x54781 +x54411 +x54041 +x53671 +x52931 +x51451 +
x51081 +x50711 +x49231 +x48491 +x47381 +x47011 +x46271 +x45901 +x45161 +x44791 +x43681 +x42571 +
x41461 +x41091 +x40351 +x39981 +x39611 +x39241 +x38871 +x38501 +x38131 +x37021 +x36281 +x35911 +
x34431 +x34061 +x32951 +x32581 +x30731 +x30361 +x29621 +x29251 +x28881 +x28511 +x28141 +x27401 +
x27031 +x25551 +x23701 +x22961 +x21851 +x21111 +x20741 +x20371 +x20001 +x19631 +x18891 +x18151 +
x15561 +x14451 +x14081 +x13711 +x12971 +x12601 +x12231 +x11121 +x10381 +x9641 +x9271 +x8901 +
x7421 +x6681 +x6311 +x5571 +x5201 +x2981 +x2611 +x2241 +x1871 +x761 +x21)z3 +x84391 +x83651 +
x80691 + x79951 + x79581 + x78841 + x78471 + x77731 + x77361 + x75141 + x74771 + x73291 + x72551 +
x71811 + x71441 + x71071 + x70701 + x70331 + x69961 + x68851 + x68481 + x66631 + x65151 + x64781 +
x64411 +x64041 +x63301 +x61451 +x61081 +x60341 +x59231 +x58861 +x55901 +x55531 +x54791 +x53311 +
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x52571 +x52201 +x49981 +x49611 +x49241 +x48871 +x48501 +x47761 +x47021 +x46651 +x46281 +x44431 +
x44061 +x43691 +x43321 +x42951 +x42581 +x42211 +x41841 +x41101 +x40731 +x39991 +x37401 +x37031 +
x36661 +x36291 +x33701 +x33331 +x32961 +x31481 +x30741 +x30371 +x30001 +x29261 +x28891 +x28151 +
x26301 +x25931 +x25561 +x25191 +x24081 +x22601 +x22231 +x21491 +x20751 +x20011 +x19641 +x18901 +
x18531 +x17421 +x17051 +x16681 +x15941 +x15201 +x14831 +x14461 +x13351 +x12981 +x11871 +x11131 +
x10021 +x8911 +x8541 +x8171 +x7431 +x6691 +x4841 +x3731 +x3361 +x2991 +x2621 +x1881 +x771 +x401 .

3. n = 61,m = 60, SC = {1},

• Orsini-Sala’s system I:

– deg (σj) = 1152921504606846976,

– GB computation time: almost impossible to compute the Gröbner bases of this
system,

• Modified system K:

– deg (Ωj) = 37882,

– GB computation time: 1564.78 seconds,

• The general error locator polynomial is a huge polynomial.

6 Summary

The system K is sufficient to obtain the general error locator polynomial of t-error-correcting
BCH codes since Ωj ∈ K contain all possible syndromes for the codes. In this paper, the general
error locator polynomial of 3-error-correcting BCH codes can be obtained and the amount of
computation time of the lexicographic Gröbner bases is greatly reduced.
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Abstract. Gallium nitride (GaN) is a wide-band gap (Eg=3.4eV) semiconductor and is a candi-
date for high-power devices. As an impurity, hydrogen (H) plays an important role in GaN-based
devices. We perform first-principles calculations to investigate the stable geometry of H impurity.
We carry out the density-functional calculations within the generalized gradient approximation
(GGA) using PHASE/0. We find that the bond-center site is the most stable site for H+, whereas
the trigonal channel at the center of wurtzite, where the hydrogen has three nearest Ga atoms, is
the most stable for H0 and H−, which is consistent with the results of past theoretical studies. We
discuss some details of optimized geometries and find that these geometries does not contradict with
the results of µSR. We confirm that the present supercell model well describes the impurity state
and conclude that the hydrogen impurity has a negative-U property in GaN, which is consistent
with the past theoretical studies

Keywords: Hydrogen, GaN, impurity

1 Introduction

Gallium nitride (GaN) is an important semiconductor after silicon. Its wide-band gap of 3.4 eV
affords its special properties for applications in electronic and optoelectronic devices, i.e bright,
highly efficient blue and green light-emitting diodes (LED) [1]. The photons of the emitted light
have an energy similar to the value of the energy gap. GaN also is a direct band-gap. In the case
of direct band gap, the optical transitions across the bandgap are ”allowed” and therefore much
stronger than indirect bandgaps, so the direct band gap give more light emittion than indirect
band gap semiconduntor. With these advantages, GaN-based LED have started to replace light
bulbs and fluorescent tubes, which means more efficiency in energy and cost reductions.

The semiconductor LED require pn-junction, i.e junction between p-type and n-type. However,
when crystal GaN is grown by common growth techniques, it exhibits n-types conductivity. The
p-type conductivity of GaN was initially difficult to obtain, but Akasaki and Nakamura et.al have
solved it by thermal annealing and reveal that hydrogen is the important key of this problem [2,3].
Hydrogen as a common impurity in semiconductor shows very complex behavior. It has a big
influence on mechanical and optoelectronic properties of several semiconductor because of its ability
to passivate and compensate both shallow and deep defects. It acts as amphoteric impurity in
semiconductor, which means hydrogen can acts as a donor or an acceptor [4]. Large concentrations
of hydrogen appear in many semiconductor growth techniques, such as metal-organic chemical
deposition (MOCVD) or hydride vapor phase epitaxy (HVPE).

In most stages of GaN-based devices fabrication are influenced by hydrogen. The hydrogen
incorporated during growth of GaN to passivation the acceptors, and also in postgrowth to render
the acepptors electrically active [5]. In the other words, the hydrogen atoms plays an important
role in most processing step of GaN-base devices. With the role of hydrogen in GaN, it seem
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to be necessary to study and investigate the relevant behavior of hydrogen in GaN. The goal of
this first-principles study is to investigate the stability of hydrogen impurity in wurtzite GaN. We
find the most stable geometry of hydrogen impurity in GaN and compare the stability of either
positively or negatively charged states of the hydrogen atom with the neutral charge in GaN.

2 Computational Method

There are three geometry crystal structures for GaN : the wurtzite, the rocksalt and the zinc-blende
(cubic). In this work, we focus on the wurtzite, which is the most stable one for bulk GaN. In order
to examine the hydrogen impurity in GaN, we consider a model of one hydrogen atom in 72 atoms
GaN supercell to investigate the stability geometry for charge-state of hydrogen in GaN. We carry
out the first-principles calculation using PHASE/0 code, within the framework of the Generalized
Gradient Approximation (GGA) and the ultrasoft pseudo-potentials. The convergence tests of the
total energy with respect to the planewave energy cutoff and k-point sampling have been carefully
examined. In the calculation based on the PHASE/0 the cut-off energies of the wave function and
charge density are 25 and 225 Ry, respectively. A supercell geometry containing 72 host atoms,
and a set of k points generated by the 2x2x2 mesh for Brillouin-zone integration. The energy
convergence is within 1.0e-03 Hartree/Bohr, and remaining force in the optimized geometries is
within 1.0e-03 Hartree/Bohr.

(a) Wurtzite unitcell (b) Possible position of H in GaN

Figure 1: (a) Wurtzite unit cell of GaN consist of two atoms gallium and two atoms nitrogen, with
lattice parameter a and c also the internal parameter u. (b) GaN geometry structure with six
possible locations where hydrogen atom may reside, they are Ga-AB⊥, Ga-AB‖, N-AB⊥, N-AB‖,
BC⊥, and BC‖,

3 Results and Discussions

3.1 The Optimized Wurtzite Structure

To study the influence of hydrogen impurity on the properties of GaN, stable structure of the
wurtzite GaN has to be determined. As we can see at Fig. 1a, for wurtzite there are four atoms
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per hexagonal unit cell. The unit vectors are −→a1=(a,0,0),−→a2=(a/2,a
√

3/2,0), and −→a3=(0,0,c), where
a and c are the wurtzite lattice constants. The positions of gallium atom are (1/3,2/3,0) and
(2/3,1/3,1/2) while the nitrogen atom positions are (1/3,2/3,u) and (2/3,1/3,1/2+u), where u is
internal parameter. In the ideal wurtzite structure, the value of u is constant (u=3/8) and c/a
=1/
√
u, all four nearest-neighbor distances are equal and all bond angles are ideal tetrahedral

angles (109.5).
In present work, to get the stable structure, we calculate equilibrium geometry of the wurtzite

phase, following the procedure outlined in [6]. First step, we use ideal wurtzite geometry parameter
and we vary the lattice constant a to get the equilibrium of a. After that, we vary the c/a ratio
while we keep the last lattice constant a and internal parameter u is ideal, we get the new c/a
value. With the new c/a, we vary the lattice constant a to determine new equilibrium of lattice
constant a. Finally we vary the internal parameter u by keep the value of a and c/a ratio, so we
can get the equilibrium of all parameter in wurtzite geometry including u.

Figure 2: Total energy as a function of the latice constant a and c, c/a ratio and u for wurtzite GaN

Table 1 compares the values of the equilibrium lattice constants a, c, and of the internal
parameter u resulting from the present calculation with a collection of experimental and theoretical
values available in the literature. In Fig. 2, we plot the total energy versus lattice constant a,c, the
c/a ratios and the internal structural parameter. With respect to experiment, our calculation lattice
constant a and c as obtained using GGA is smaller by 1.16% and 0.69% respectively. After we get
the stable structure, we examined several interstitial configurations of H. The equilibrium position
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Table 1: Lattice constants a and c, c/a, internal parameter u of wurtzite GaN obtained in this
works, previous theoritical calculations and experimen

Parameter This Work Calculations [6] [7] [8] Experiment [6] [7] [8]

a(Å) 3.143 3.124 – 3.245 3.180 – 3.192

c(Å) 5.130 5.0 – 5.228 5.166 – 5.185

c/a 1.632 1.628 – 1.632 1.624 – 1.627

u 0.377 0.375 – 0.376 0.375 – 0.377

of H atom in the supercell of GaN is determined by the geometry optimizations with different
initial positions of the H atom. Many possible sites for interstitial hydrogen were investigated for
the three states, H+, H0, and H−, were calculated at each site. There are six possibilities position
of H atom in the supercell, as we can see at the Fig. 1b.

3.2 The Most Stable Geometry

As already mentioned before at the introduction hydrogen acts as amphoretic impurity in semi-
conductor, i.e. it can have positive or negative charge state. So, we examine the consequences
of this amphoretic behavior of hydrogen in GaN. First we determine the most stable geometry
by calculating the total energies for neutral and charge states of hydrogen in GaN. The hydrogen
atoms were placed in various possible position (see Fig. 1b), then perform the self-consistent field
(SCF) calculation based on density functional theory (DFT) with allowing the atoms to relax. The
resulting total energies for H+, H0 and H− are shown in Fig. 3.

(a) (b) (c)

Figure 3: Configuration of the most stable geometry for hydrogen in wurtzite GaN obtained from
first-principles calculation. (a)The H+ stable at the bond center, (b) The H0 stable at triagonal
channel, and (c) The H− also stable at triagonal channel center of wurtzite

Our results are in general consistent with those of past studies [9] [10]. Here we clarify some
details of the optimized geometries. GaN is partly ionic in nature, this properties has significant
influence on stable position for charge states of H. We found that the bond-center parallel to c
axis (BC‖) is the most stable geometry for positive charge of hydrogen (H+) (see Fig. 3a), with
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the calculated N-H bond length for this position is 1.02Å and Ga-H bond length is 1.93Å. For the
negative charge of hydrogen (H−), the most stable geometry is at the center of triagonal channel
(see Fig. 3c). At this geometry the hydrogen atoms has three nearest gallium atoms. Those stable
geometry results for positive (H+) and negative charged (H−)of hydrogen in GaN are in good
agreement with previous theory calculation [9] [10] and the experiment that investigate muonium
(Mu) defect in GaN [12] [13]. Mu is similar or as a pseudo-isotope of hydrogen which has a very
light mass (mµ ' 1

9 mp). Those similarity and the very light mass of Mu implies to the bigger
of quantum effects of Mu to give more accurate results. The neutral hydrogen (H+) in GaN also
found stable at the center of the trigonal channel (see Fig. 3b), where the hydrogen atoms has three
nearest gallium atoms. The Ga-H bond length for this geometry almost same with the Ga-N bond
length, about 1.95Å. The µSR experiment provides important information on the geometry [11].
We find that all the optimized geometries have trigonal symmetry, which is consistent with results
of µSR ( [12–14])

3.3 The Stability of Charge Hydrogen

After determining the most stable geometry of neutral and charge states of hydrogen in GaN, now
we investigate which is the most stable states of hydrogen. As shown in Fig 4, the band dispersion
of the impurity level is small enough to determine the energetical position of the impurity level.
In order determine the stability of the system with charged states compared to the neutral one,
we examine several steps as follows. In case for negative charge states, first we determine the
most stable geometry structure of neutral charge state, and we have done this in the sub section
3.2. After that we calculate the total energy of the -1 charge state for the geometry optimized
in the case of the neutral charge state, Etot(0). second step, we optimize the geometry for the -1
charge state and get the total energy, Etot(−1). The difference between the energies of Etot(0) and
Etot(−1) is called the relaxed energy ∆Erelax which is negative.

(a) (b) (c)

Figure 4: The calculated band structure of GaN with hydrogen atom in three different charged states,
to measure the ∆Erelax (a) positive half charged, (b) neutral, and (c) negative half charged.

According to the Slater’s argument [15] [16] that explain if we have two systems with the same
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atomic geometry and have charged states 0 and -1, then the difference in total energy between them
is given as the highest occupied level energy of a system having half-negative charge with the same
atomic geometry. So in the third step, we carry out calculation of the electronic structure levels
for the negative half charge state and the geometry optimized for the neutral charge state, then we
calculate the difference between the energies of the impurity level and the valence band maximum,
is called the level energy ∆Elevel which is negative. We can get this value from electronic band
structure as seen on Fig. 4. The energy of the ∆Erelax and ∆Elevel for the positive charge state
can be computed in the same manner as well as negative charge.

The relative total energy of the charged states q hydrogen for the fermi energy µ is given by :

relEtotal(q) = ∆Erelax(q) + ∆Elevel(q) + µ.q (1)

As we can see at Fig. 5, it shows the relative total energy of hydrogen impurity in its various
charge state in GaN. The Fermi level (EF ) is set to zero at the top of valence band of GaN and
(EF ) changes within the calculated band-gap energy. The EF moves through the band gap. In
the beginning, the stable charge is the positive charge of hydrogen (for EF below 1.7eV) and then
changes directly to the negative one (for EF above 1.7eV). This implies that p-type GaN, where
EF close to the valence band maximum, the positive charged H+ is stable and H act as a donor.
For the n-type GaN, where EF close to the conduction band minimum, the negative charged H−

is favored and act as acceptor. The facts that the neutral states H0 is never stable in this system,
on the other words that the hydrogen thus effectively ”self-compensates”. With this results, we
conclude that the hydrogen has a negative-U behavior in GaN, which is consistent with the results
of past theoretical studies [9] [10].

Figure 5: The relative total energies of the positively charged (H+), neutral (H0), and negatively
charged (H−) as a function of fermi level. When fermi level = 0, it is corresponds to the top of
valence band.
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4 Summary

First-principles calculations are carried out to investigate the behavior of hydrogen impurity in
GaN. We find that the bond-center (BC) site is the most stable geometry for H+ impurity whereas
the trigonal channel at the center wurtzite with the hydrogen has three nearest Ga atoms is the most
stable geometry for H0 and H−, which is consistent with results of past studies. We clarify some
details of the geometries and find that our results are in good agreement with experimental results
of muon. However, the calculation of the hyperfine coupling constants is necessary for further
discussion in future. We clarify that the present supercell model well describes the impurity level
and find that the hydrogen impurity has a negative-U property in GaN, which is consistent with
the results of the past theoretical studies.
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Abstract. Ferroelectric materials are new candidates for photovoltaic materials. Ferroelectrics
can produce photocurrents without using p-n junction which is necessary for conventional photo-
voltaic devices. BiFeO3 is one of the most promising multiferroic materials having band gap of
2.5 eV. This band gap is too wide to be used as photovoltaic devices, therefore lower band gap is
necessary. In order to reduce BiFeO3 band gap, we carry out a first-principles calculation. We
study Cu substitution impurities. We introduce a single Cu atom in the 2x2x2 supercell and we
find that the band gap is reduced by 0.039 eV. We expect the existence of optical transition energy
between valence and impurity band with energy value 1.232 eV lower than the band gap of BiFeO3.

Keywords: BiFeO3, Cu substitution impurities, photovoltaics, band gap.

1 Introduction

Bismuth ferrite (BiFeO3) is a promising room temperature single-phase multiferroic material [1]. It
has ability to exhibit both ferromagnetic (G-type antiferromagnetic) under the Neel temperature
(TN ) of 640 K and ferroelectric properties under the Curie temperature (TC) of 1120 K [2, 3].
Those two orders are coupled so that by changing the magnitude or direction of one type of
order, the other is also changed [4]. At ambient condition, BiFeO3 has a rhombohedral symmetry
belonging to the R3c space group [7]. It permits the development of spontaneous polarization
along [111] direction of the highly distorted perovskite [8]. The primitive unit cell contains two
formula units with ten atoms [9] as shown in Fig. 1. The perovskite structure has the general
stoichiometry ABX3 [10]. Where ”A” is large cation, ”B” is smaller cation, and ”X” is anion. In
BiFeO3 case, both A and B cations are trivalent states.

Figure 1: Schematic view of BiFeO3 unit cells.
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Recently the photovoltaic effect in ferroelectric materials has attracted enormous interest. Fer-
roelectrics can generate photocurrents without using p-n junction which is necessary for conven-
tional photovoltaic devices. Ferroelectrics do not need separation of electrons and holes by internal
field et all, photocurrent and photovoltage can be observed in pure homogeneous single crystals
[5, 6]. This ability leads ferroelectrics as one of the candidates for next generation photovoltaic
devices. Experimentally multiferroic BiFeO3 materials having band gap of 2.5 eV as reported by
Gao et al.[12]. Unfortunately, these band gap is too large to be used for photovoltaic application.
Material with band gap 1.3–2.0 eV have the greatest potential to make an efficient cell [13]. A
wider band gap would be unable to absorb low-energy photons and a narrower band gap would be
lose many high-energy photon to heat. This band gap problem become our concern in this study.

2 Calculation Details

To perform the first-principles electronic-structure calculations we use density functional theory
(DFT) as implemented in OpenMX code [14]. All calculations in this study performed by local
spin density approximation (LSDA) exchange correlation form [15] plus U [16] approach with U=4
eV for Fe and Cu 3d electrons, norm-conserving pseudopotentials [17] are used. Wavefunctions
are expanded by linear combination of multiple pseudoatomic orbitals (LCPAO) [18, 19]. The
orbitals are specified as Bi10.0-s3p3d2, Fe8.0S-s3p3d3, Cu8.0S-s3p3d3, and O6.0-s3p3. The former
numbers written after atomic symbols are cut off radii of the confinement potential. Whereas the
latter parts (s3p3d2, etc) are number of orbitals for s, p, and d composed. These calculations
are performed with a 8 × 8 × 8 uniform k-point mesh centered at Γ and the convergence criteria
for energy is 10−7 Hartree. G-type antiferromagnetic order is assumed for all calculations with
collinear spin arrangement (does not consider spin orbit coupling).

3 Results and Discussion

3.1 Structural parameters

BiFeO3 has rhombohedral structure with space group R3c, where the Bi atom is placed at the
origin. The calculation results of full structural optimization of G-type antiferromagnetic BiFeO3
are collected in Table 1. Our results are in better agreement with both experimental [20] and pre-
vious calculations [21]. Fractional coordinates of atomic positions presented in Wyckoff positions,
2a for Bi and Fe and 6b for O are referred to the rhombohedral system. The lattice constant
of the primitive unit cell arh and the rhombohedral angle α are also listed. Both calculated and
experimental rhombohedral angle are very close to 60◦ which would appropriate to perfect cubic
lattice vectors.

Tabel 1. Calculated and experimental parameters for BiFeO3 in R3c structure.

Present calc. Prev. calc. Expt.
Bi (2a) x 0 0 0
Fe (2a) x 0.214 0.227 0.221
O (6b) x 0.536 0.542 0.538

y 0.938 0.943 0.933
z 0.392 0.397 0.395

arh(Å) 5.59 5.52 5.63
α(◦) 59.37 59.84 59.35
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In the R3c structure, the Fe site has two types of bonds with different bond length. Three
oxygen neighbors have bond lengths of 1.94 Å and the others have 2.11 Å, which results in the
distortion of FeO6 octahedra. The ideal cubic perovskite structure has O-Fe-O bond angle of 180◦,
which is changed in this system by 165.07◦ because of its distortion.

3.2 Electronic properties

We calculate the electronic structures of BiFeO3 in R3c structure. For BiFeO3 unit cell, the struc-
ture has indirect band gap of 1.77 eV. We did a comparison with previous calculation performed
by Neaton et al.[21] as listed in Table 2.

Tabel 2. BiFeO3 unit cell band gap of present and previous calculations (in eV).

U=4 eV
Present Calc. 1.8
Previous Calc. 1.9

In order to reduce BiFeO3 band gap, we introduce Cu substitution impurities with concentration
about 6.25%. So that we need to enlarge BiFeO3 system from unit cell to 2× 2× 2 supercell. The
supercell system consists of 80 atoms: 16 Bi, 16 Fe, and 48 O atoms, where a Fe atom is replaced
with a Cu atom as an impurity as shown in Fig. 2. After adding Cu impurities, then we relax the
position of all atoms until the absolute deviation between the eigenvalue energy at the current and
previous SCF step is less than convergence criterion.

Figure 2: A 2× 2× 2 BiFeO3 supercell with Cu substitution impurities. Grey ball is Bi, blue ball is Fe, red ball is
O, and brown ball is Cu.

The calculated energy band structure of BiFeO3 supercell along high-symmetry directions in
Brillouin zone for system without impurities (called perfect system) and system with Cu impurities
(called impurity system) are given in Figs. 3(a) and 3(b). Red and green structures for the up-
and down-spin states, respectively. Up- and down-spin states in perfect system have exactly same
value, therefore this system has no net magnetic value. Both perfect and impurity systems have
indirect band gap, with the top of the valence band located at F point and the bottom of the
conduction band at γ point.

For perfect system, we can find energy band gap Eg about 1.834 eV. Some states appear between
valence and conduction band for impurity system case. This states come from Cu impurities (called
impurity band). So, in order to perform band gap calculation we have to neglect this states. Then
we can find impurity system has band gap ECu

g about 1.795 eV, only 0.039 eV reduced from
perfect system band gap. This band gap is still too wide for photovoltaic applications. We
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expect the existence of optical transition energy ECu
Opt between valence and impurity band. This

optical transition energy has value about 0.602 eV, 1.232 eV different with the band gap of perfect
system. Unfortunately this optical transition energy value also still not favorable for photovoltaic
applications. In addition, the calculated Fe magnetic moment is 3.67 µB, in a good agreement
with experimental value [20] (3.75 µB) and theoretical value [22] (3.65 µB).

(a) (b)

Figure 3: Band structures of BiFeO3 supercell along high-symmetry directions, the Fermi level is located at 0 eV.
The valence, conduction, and impurity band edges are indicated by the red dashed horizontal lines. (a) BiFeO3

supercell system without impurities, (b) BiFeO3 supercell system with Cu impurities.

4 Conclusion

In summary, we have investigated the effect of Cu substitution impurities in BiFeO3 system. We
find that Cu impurities reduce BiFeO3 band gap by 0.039 eV. We expect there is optical transition
energy between valence and impurity band, which has value 1.232 eV lower than the band gap of
BiFeO3 perfect system.
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Abstract. Solvation free energy has valuable role as represents the desolvation cost of a molecu-
lar binding interaction, which is very important in a variety of chemical and biological processes.
Therefore, many computational methods have been explored to predict this value. In this study,
we attempted to find the correlation between experimental and calculated value of solvation free
energy of proteins, containing organic molecules, by using quantitative structure property relation-
ship (QSPR) model. To obtained a comparable value of solvation free energy which will be used
as reference in QSPR model, we adopted energy representation (ER) method. And as this method
works through molecular dynamic (MD) simulation, we then performed the MD simulation prior
to the calculation by ER method. The results showed that the predicted solvation free energies were
quite close to calculated values by ER method. We also found that the values of solvation free
energy, both in MD simulation and ER method, were well correlated to solvent accessible surface
area of hydrophobic portion.

Keywords: solvation free energy, organic molecules, proteins, molecular dynamics, ER method,
QSPR model

1 Introduction

Solvation free energy is one of the most important physical quantity to describe thermal system of
a solution. It has valuable role as represents the desolvation cost of a molecular binding interaction
[1], which is very important in a variety of chemical and biological processes. For instances, in drug
discovery and in analysis of protein folding and binding. Therefore, many computational methods
have been explored to predict this value.
In recent years, quantitative structure-property relationship (QSPR) model has been widely used
in chemical physics area to predict some physical quantities of organic materials. QSPR model
is well known for its simplicity yet has the ability to provide a promising result. This approach
attempts to relate the structure-derived property of a chemicals to its biological or physicochemical
activity. One of the most fundamental and common modeling method in QSPR is multiple linear
regression, which is favored for its simplicity and ease of interpretation [2].
In construction QSPR model of protein, a reliable data of solvation free energy is strongly needed.
However, due to limitation in experimental measurements, solvation free energy of protein is still
rare even unavailable. Hence, to provide such value, we adopted energy representation [3] (ER)
method which has been successfully applied for many biological systems [4].
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Here, firstly we employ ER method to calculate solvation free energy of 50 organic molecules
containing diverse organic functions in explicit water solvent. As the calculation using this method
is obtained in combination with molecular dynamics (MD) simulation [5], we carry out the MD
simulation of each molecule prior to the calculation of this value. In order to confirm the validity
of this method, we then compare the results to experimental data. Further, we compute solvation
free energy of proteins and construct the QSPR model with utilizing MD simulation.

2 Materials

We calculated solvation free energies of 50 organic molecules containing diverse organic functions;
alkanes, alkenes, aromatics, alcohols, aldehydes, ketones, amines, ethers, esters, and others. The
number of atoms is vary from 5 to 40. We retrieved the coordinate files of these molecules in mol2
format from reference [6]. The 50 organic molecules are listed in Table 1 below.

Table 1: The 50 organic molecules, number of atom and experimental value of ∆Gsol

Name Atom
∆Gsol exp.
(kcal/mol)

Alkanes
ethane 8 1.83
2,2-dimethylbutane 20 2.51
2,3,4-trimethylpentane 26 256
chlorofluoromethane 5 -0.77
1,1,1,2-tetrachloroethane 8 -1.43
Alkenes
1,1-diphenylethene 26 -2.78
ethylene 6 1.28
1,1,2-trichloroethylene 6 -0.44
1-methylcyclohexene 19 0.67
butadiene 10 0.56
Aromatics
1,3-dichlorobenzene 12 -0.98
toluene 15 -0.90
m-xylene 18 -0.83
9,10-dihydroanthracene 26 -3.78
1,4-dibromobenzene 12 -2.30
Alcohols
phenol 13 -6.60
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Table 1: The 50 organic molecules, number of atom and experimental value of ∆Gsol (continued)

Name Atom
∆Gsol exp.
(kcal/mol)

methanol 6 -5.10
2-methoxyethanol 13 -6.62
p-cresol 16 -6.13
2,2,2-trifluoroethanol 9 -4.31
Ethers
anisole 16 -2.45
1,4-dioxane 14 -5.06
diphenylether 23 -2.87
tetrahydrofuran 13 -3.47
2,5-dimethyltetrahydrofuran 19 -2.92
Aldehydes
butanal 13 -3.18
2-hydroxybenzaldehyde 15 -4.68
2-methylpropanal 13 -2.86
4-(1-methylethenyl)-1-cyclohexene-1

25 -4.09
-carboxaldehyde
formaldehyde 4 -2.75
Ketones
cyclopentanone 14 -4.70
acetone 10 -3.80
nitroxyacetone 13 -5.99
3,3-dimethyl-2-butanone 19 -3.11
cyclohexanone 17 -4.91
Esters
methyl acetate 11 -3.13
ethyl hexanoate 26 -2.23
methyl-4-nitrobenzoate 20 -6.88
methyl pentanoate 20 -2.56
isopropyl formate 14 -2.02
Amines
2-naphtylamine 20 -7.47
1-N,1-N-diethyl-2,6-dinitro-4-
(trifluoromethyl)benzene-1,3-diamine

35 -5.66

2-methoxyethanamine 14 -6.55
(2-benzhydryloxyethyl)-dimethyl-
amine

40 -9.34
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Table 1: The 50 organic molecules, number of atom and experimental value of ∆Gsol (continued)

Name Atom
∆Gsol exp.
(kcal/mol)

n-methylmethanamine 10 -4.29
Miscellaneous
benzamide 16 -11.00
butane-1-thiol 15 -0.99
pyridine 11 -4.69
2-methylpirazine 13 -5.51
benzonitrile 13 -4.10

In construction of QSPR model of protein, we used 4 small and neutral charge proteins. These
proteins were leginsulin, cysteine-rich module 3 from integrin beta-2 (the name is shortened as
cysteine-rich in this paper), crambin, and ubiquitin. The initial structures were taken from X-ray
diffraction and NMR solution from Protein Data Bank. The secondary structure of these proteins
in ribbon representation using visual molecular dynamics (VMD) tools are shown in Figure 1. The
protein data bank (PDB) ID, the number of residues and atoms are listed in Table 2.

3 Methods

3.1 MD Simulation

In MD simulations for organic molecule, the force field parameters and partial charge for each
atom were assigned by antechamber [7] program of Amber tools in which general atom force field
(GAFF) [8] and AM1-BCC [9,10] were utilized. After generating Amber topology and coordinate
files, these two files were converted to Gromacs topology and coordinate files using acpype [11]
conversion script. These organic molecules were then solvated in a simulation box of 32Å × 32Å
× 32Å which consists of 1000 water molecules using Gromacs utilities. The simulations were
performed for 100 ps and sampled every 10 fs for solution system. Meanwhile, for pure solvent and
isolated solute systems, the simulations were conducted for 10 ps and 10 ns and sampled every 200
fs.

Meanwhile, for protein system, we carried out MD simulations for 20-30 ns to obtain the equilibrium
state of the system. The proteins were placed at the center of simulation box with the distance
at least 12Å from the box edge. The box was then filled with water molecules to set the density
of the system near to 1 g/cm3. The protein simulations were performed with AMBER99SB [12]
force field.

All MD simulations, for both organic molecules and proteins, were performed by Gromacs 4.6.5
program package. The conditions were generated through NPT ensemble at 300 K and 1 bar using
Nose-Hoover thermostat and Parinello-Rahman barostat with time constant of 1 ps [13, 14]. The
Lennard-Jones potential was applied for intermolecular interaction with cutoff length of 13.5 Å.
To handle electrostatic interaction, particle-mesh Ewald (PME) [15] with interpolation order of 6
was used. TIP3P water model [16] were adopted for water molecules. And the simulations were
run with time step for integration of 2 fs.
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(a) Leginsulin (b) Cysteine-rich

(c) Crambin (d) Ubiquitin

Figure 1: Various initial structure of proteins were taken from the original PDB file

Table 2: The protein data bank ID, the number of residues and atoms of 4 proteins [17–20].
Protein PDB ID Residue Atom
Leginsulin 1ju8 37 524
Cysteine-rich 1l3y 41 557
Crambin 1crn 46 642
Ubiquitin 1ubq 76 1231

3.2 Energy Representation

In energy representation (ER) method, solvation free energy can be represented as a functional of
energy distribution functions ρe(ε) and ρe0(ε) and the correlation matrix χe

0(ε, η) [4]. The energy
distribution ρe(ε) is given by

ρe(ε) = 〈
∑
i

δ(v(ψ,xi)− ε)〉 (1)

where ψ is the solute coordinate, xi refers to the coordinate of the i -th solvent molecule, v is
the potential function for the solute-solvent pair interaction, the summation is taken over all the
solvent molecules, and 〈...〉 is the ensemble average.
The calculation using ER method is obtained in combination with MD simulation. Therefore, to get
the energy distribution functions and correlation matrix, we performed two kinds of MD simulation
prior to the calculation of solvation free energy for each organic material. These simulations are
solution system ρe(ε) and the pure solvent system ρe0(ε). The solution system is the system in which
the interaction presents between the solute and the solvent molecule under the solute-solvent pair
interaction energy v of interest at full coupling. While the reference solvent system refers to the
system in which no interaction physically present between the solute and the solvent molecule [4].
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Figure 2: Root mean square displacement (RMSD) profiles of the four proteins

The energy distribution function ρe0(ε) and correlation matrix χe
0(ε, η) are constructed by placing

the solute into the pure solvent as a test particle.
In MD simulation of solution system for protein, the protein conformations were taken from the
stable state of the 20 ns equilibration MD. From the last 10 ns simulation, the structure of protein
was sampled every 200 ps, leading to 50 samplings of protein structure. For each structure, the
MD simulation was performed in which the protein was in fixed condition. The simulation were
run for 1 ns and was kept every 10 fs, yielding 100 k sampling data for the calculation of ρe(ε).
The next is the reference solvent system, which was used for the calculation of ρe0(ε) and χe

0(ε, η).
The simulation was carried out for 1 ns and the snapshot was kept every 1 ps, leading to 1 k
sampling data. The protein with random positions, yet same conformation as that in the solution
system, were then inserted to the center of reference solvent system. The number of insertion
sampling was 1000, hence we had 1000 k sampling data for the calculation of ρe0(ε) and χe

0(ε, η).
The number of water molecule in both of simulation was equal to that in the prior equilibrium
MD. These simulations were also conducted in NPT configuration.

3.3 QSPR Model

In construction of QSPR model, we adopted linear regression equation from Duffy and Jorgensen
model [21]:

∆Gsol = β < Eelec > +α < EvdW > +γ < SASA > +ε (2)

where Eelec is the electrostatic (Coulomb) energy between solute and solvent molecule. EvdW

represents the van der Waals (Lennard-Jones) interaction energy of solute-solvent. While SASA
refers to solvent-accessible surface area of the solute by solvent molecule. The correlation coefficient
β, α and γ are obtained from the covariance matrix among the MD simulation-derived descriptors
and the reference solvation free energies, and is defined by:

cov(y, xj) =
k∑

m=1

bm.cov(xm, xj) j,m = 1, ..., k (3)
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where y is the reference solvation free energy, x the MD simulation-derived descriptors, k the
number of descriptors, and bm refers to correlation coefficient of each descriptor (β, α and γ). The
covariance matrix is governed by the following equation:

cov(x, y) =

∑n
i=1(xi − x̄)(yi − ȳ)

(n− 1)
(4)

where x and y are the observed variables, can be the reference solvation free energy–descriptor
or descriptor–descriptor. The index of i refers to the i-th data, while the bar signs refer to mean
value of each observed variable. Then, the remaining ε becomes

ε = Ȳ −
∑
m=1

bmx̄m (5)

where Ȳ is the mean value of the reference solvation free energy.
We also modified the equation 2 to asses the contribution of hydrophobic and hydrophilic properties
of organic material. To do so, the SASA area was then divided into 2 parts, the areas of hydrophilic
and hydrophobic portions of SASA (SASAphilic and SASAphobic). The modified of equation 2 is
shown below:

∆Gsol = β < Eelec > +α < EvdW > +γ1 < SASAphobic > +γ2 < SASAphilic > +ε (6)

The average values of all descriptors in equation (2) and (6) were calculated using g energy and
g sas functions in Gromacs. The solvent probe radius of 1.4 Å was defined in calculation of SASA
by g sas function.

4 Results and Discussion

4.1 MD Simulation of Proteins

We calculated the root mean square displacement (RMSD) of backbone atoms of the four proteins
to examine the stability of the systems during MD simulations. The RMSD curves are illustrated
in Figure 2. These curves show that the three proteins reached the equilibrium state after about
10 ns simulation. Meanwhile, the RMSD profile of Cysteine-rich increased after 10 ns. Thus, to
further see the dynamics of the system, the MD simulation was extended to 30 ns for this protein.
Later,we found that it was fully equilibrated after about 15 ns simulation. The average of RMSD
of all protein systems at stable state were 0.58-3.22 Å, indicating that overall dynamics structures
were close to the native structures without large structural changes.

4.2 Solvation Free Energy by ER Method

The calculated solvation free energies of 50 organic molecules and the corresponding experimental
data from reference [6] are shown in Figure 3.(a). We found that these values were in good
agreement with the experimental data with the average of difference was about 2.09 kcal/mol.
We also investigated the solvation free energy with respect to the surface properties area of organic
molecules. Figure 3 (b) displays the solvation free energy and the value of whole SASA. From this
figure, we could tell that these two values do not correlate well for all organic molecules. Hence,
we further analyzed the surface area into SASAphobic and SASAphilic as shown in Figure 3 (c) and
(d). Based on these figures, SASAphobic has positive correlation towards the solvation free energy,
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Figure 3: The experimental vs calculated values of solvation free energy of organic molecules by ER method (a) and
the surface properties area of the molecules (b), (c), (d)

denoted by the correlation coefficient r of 0.29. Whereas SASAphilic shows weak correlation in
which r = 0.11. It means SASAphobic has more contribution to the solvation free energy of organic
molecules. In addition, we observed that almost all of the used molecules consisting of more
hydrophobic than hydrophilic atom. And these figures also indicated that more hydrophobic areas
of the molecules can be accessed by water solvent than the hydrophilic does.

On the other hand, for the calculation of solvation free energies of proteins, the results are shown in
Figure 4 (a) as the protein size (see Table 3 for the actual values). According to these results, the
solvation free energies vary depend on the number of atom on the system. Also, the current results
of solvation free energies are negative, showing that the proteins can stably exist in pure water
solvent. The examined surface properties of the four proteins are illustrated in Figure 4 (b) (the
calculated values are listed in Table 3). This figure shows the larger the protein, the possibility of
the solvent molecules to access the area is also increase. Especially, globular protein like ubiquitin
which has many hydrophilic residues on the surfaces in contact with water, leading to the high
value of SASAphilic. In contrast, despite crambin also a globular protein, it is more known as
”inside out” globular protein in which containing more hydrophobic residues [22]. Therefore, this
protein is insoluble in water solvent indicated by the low value of SASAphilic and the solvation free
energy.
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Figure 4: (a) Solvation free energies of the four proteins; and (b) The average of solvent accessible surface areas
(SASA) of the four proteins; the green line: whole SASA, the red line: the SASA of hydrophilic portion (SASAphilic),
the blue line: the SASA of hydrophobic portion (SASAphobic).

Table 3: Solvation free energies by ER method, the whole portion of solvent accessible surface
area (SASA), the SASA of hydrophilic portion (SASAphilic), and the SASA of hydrophobic portion
(SASAphobic) of the four proteins.

Protein
Solvation

SASA SASAphilic SASAphobicfree energy
(kcal/mol) (Å2) (Å2) (Å2)

Leginsulin -378 2234 1190 1044
Cysteine-rich -528 2336 1164 1172
Crambin -208 2562 1137 1425
Ubiquitin -848 4210 2188 2022

4.3 Solvation Free Energy by QSPR Model

After performing the MD simulations and the solvation free energy calculation, we constructed the
QSPR model using the MD simulation-derived descriptors from all organic molecules and proteins.
Based on the equations 2 and 6, we got the following model: -

∆Gsol = 0.1616 < Eelec > +0.3567 < EvdW > +0.1968 < SASA > −24.2945 (7)

∆Gsol =0.1131 < Eelec > +0.0085 < EvdW > +0.0679 < SASAphobic >

+ 0.0003 < SASAphilic > −9.5278
(8)

which gave the squared correlation coefficient (R2) = 0.998 and mean square error (MSE) = 35.802,
for the equation 7. Meanwhile, for the model which constructed by equation 8, the R2=0.994 and
MSE = 144.477. These results indicated that our model which governed by equation 8 was quite
good compare to Duffy and Jorgensen model. Moreover, the high values of R2 in both of models
suggest that the regression lines were well fitted to approximate the values of solvation free energy.
The predicted solvation free energies of organic molecules and four proteins are shown in Figure 5
(a),(c) and (b),(d), for the equation 7 and 8, respectively.
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We also calculated the averages of difference of these two models toward the calculated value of
solvation free energies of proteins and the experimetal data of organic molecules. For the proteins,
these values were 7.88 and 34.61 kcal/mol, for the model by equation 7 and 8, respectively. And for
the organic molecules, the averages of difference of these two models were 3.74 and 4.69 kcal/mol,
respectively.
Additionally, in our model, we found that the SASAphobic has more significant contribution than the
SASAphilic, refers to the value of coefficient correlation in the equation 8. This positive correlation
has also been presented in previous result by ER method. Moreover, the weak correlation between
SASAphilic and the solvation free energy as described in previous section also been made clear by
value of coefficient correlation in our model. These results was supported by the finding of more
hydrophobic atoms than hydrophilic in almost all organic molecules and proteins.
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Figure 5: The QSPR model which governed by equation 7 (a),(c) and equation 8 (b),(d)

5 Conclusions

We carried out MD simulations of 4 small and neutral charge proteins, also 50 organic molecules
containing diverse organic functions, to calculate solvation free energy of these organic materials.
We also constructed the QSPR model, which utilizing MD simulation, to investigate the correlation
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to the experimental data and to the calculated results of ER method. However, due to limitation
of experimental data of proteins, the comparison of solvation free energy could not be done. Thus,
we compared the results of our model to the calculated values by ER method. The comparison
indicated that the predicted values of protein were quite close to the calculated values by ER
method. We also found that the solvation free energies of our organic materials, both in MD
simulation and QSPR model, were well correlated with SASAphobic.
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Abstract. Glucose oxidase (GOx) is an enzyme and it is an important molecule to understand the energy trans-
fer system in our body. Flavin adenine dinucleotide (FAD) is co-enzyme and it is frequently combined with 
GOx. GOx helps reduction or oxidation of FAD. Redox would not happen naturally unless FAD is combined 
with GOx, therefore understanding the effect of electrostatic environment which is made by atoms of GOx is 
one of the most important factors to decide the reduction potential of GOx-FAD. In this research, we calculate 
some models which have different range of electrostatic environment of GOx, and examine the effect to the redox 
potential and compare with previous research [1]. Additionally, we propose a new scheme for calculation of 
Standard Hydrogen Electrode (SHE), which is employed to measure the reduction potential to the experimental 
definition. 
 
Keywords: Redox potential, GOx, FAD, SHE 
 
 

1 Introduction 
 
Oxidation-reduction reaction, which is usually called redox reaction, is the important reaction in bio-
chemical system. For example, photosynthesis is a process to derive the energy for plants. CO2 is re-
duced and H2O is oxidized in that process to yield carbohydrates and O2 [2]. In biological system, 
there are important redox reagents. The famous ones are oxygen, transition metal ions and a number 
of coenzymes such as Flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide 
(NAD) [1]. Coenzyme is one of the kinds of cofactor and it is an organic molecule but not a protein. It 
combines with protein, which is called enzyme, and assist in biochemical transformations. Glucose 
Oxidase (GOx, PDBIB:1CF3) is an enzyme and it is combined with FAD as a coenzyme in order to 
work as a catalyst. GOx-FAD is reduced to GOx-FADH2 by some steps. The ring of Flavin is known 
as the active side of the reaction, so we calculate the reduction potential of lumichrome part of FAD 
with some “environment atoms”.  

The difference of Gibbs energy between reduced and oxidized products is observed as re-
duction or oxidation potential experimentally. Because the absolute redox potential of half-cell cannot 
be obtained experimentally, we can discuss the redox potential by relative value to some electrode 
such as Standard Hydrogen Electrode (SHE) or silver-silver chloride electrode. SHE, the half-cell of 
redox reaction of hydrogen ion and hydrogen gas, is normally used as a reference. The absolute redox 
potential of SHE is estimated by some researchers. The International Union of Pure and Applied 
Chemistry (IUPAC) recommends to use the value of 4.44 V reported by Trasatti in 1986 [3]. We can 
calculate the Gibbs energy for each product, therefore we are able to estimate the absolute redox po-
tential by the change of Gibbs energy. It is impossible to compare the absolute value and relative val-
ue. To compare experimental and calculated data, the absolute value should be measured versus SHE. 
Many researchers generally employ the IUPAC recommendation value to measure it. However, there 
is difficulty to choose the value of absolute potential of SHE because the other researchers report dif-
ferent values ranging 4.05 V to 4.73V by different models [4]. It gives different results when we use 
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the different computational method such as calculation theory or basis sets. If we place importance on 
experimental results, we should consider the change of absolute potential of SHE because of choosing 
the computational method. Matsui and coworkers calculate the absolute reduction potential of SHE 
depended on calculation methods [4]. In this research we use that value to measure the reduction 
potentials and we also propose a new scheme to calculate reduction potential of SHE. 
 
 

2 Methods and Models 
 
The difference of Gibbs energy between before and after reaction has relation with redox potential as 
shown in equation (1): 

                     𝐸0 = −
Δ𝐺𝑟𝑒𝑑

𝑛𝐹
                                                                           (1) 

Where 𝐸0 is the absolute reduction potential, Δ𝐺𝑟𝑒𝑑 is the difference of Gibbs energy between reduced 
and oxidized, 𝑛 is the number of electrons transferred and F is the Faraday constant. We calculate the 
Gibbs energy for each side of reaction half-cell by DFT and 6-31+G(d) is used as the basis set. PCM is 
used for implicit solvent model. Generally the change of Gibbs energy by reaction in solute cannot be 
calculated directly because of fluctuation. Thermodynamic cycle is usually employed. In our case the 
calculation gives the minimum of Gibbs energy because of using PCM, therefore we can get the 
change of Gibbs energy directly. 
 GOx-FAD is reduced to GOx-FADH2. This reaction process is happen step by step as shown 
in equation (2) to (4): 

FAD + 𝑒− → FAD−                                                                   (2) 
FAD− + H+ + 𝑒− → FADH−                                                                (3) 

FADH− + H+ → FADH2                                                                 (4) 
We focus on the first step of this process shown in equation (2) and calculate the reduction potential. 
We make 2 models and we show them in figure 1 and 2. The model one is only lumichrome molecule 
which is known as the active side of the reaction [2]. This model contains only 31 atoms. It is enough 
small to be calculated by Quantum Mechanics. The second model is FAD molecule which has the 
lumichrome part and tail part. This model is little large therefore we use ONIOM method. The lumi-
chrome part which is enclosed by circle in figure 2 is treated as QM region and the other part is MM 
region. QM region is treated by DFT/B3LYP 6-31+G(d). Universal Force Field, UFF, is used for MM 
region. 

In this research, we calculate the Gibbs energy of each molecule on the half-cell for each 
model, and estimate the absolute value of reduction potential of GOx-FAD. The absolute potential is 
measured versus SHE to compare with experiment. We use 3 kinds of value for the absolute reduction 

potential of SHE, first is IUPAC recommendation value 4.44V, second is theory and basis set depend-

Figure.1 the structure of model 1 
(lumichrome molecule model) 

Figure.2 the structure of model 2 
(FAD molecule model) 
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ence value 4.99V reported by Matsui and coworkers, the last one is calculated by our new scheme as 
mentioned below. 

Experimentally SHE is the most common relative electrode. Even if silver-silver chloride 
electrode or the other electrode is used, the result is usually measured by SHE. The half-cell of SHE is 
shown in equation (5): 

1

2
H2 → H+ + 𝑒−                                                                      (5) 

This reaction contains proton. If we were able to calculate a proton by quantum mechanics method, 
we can calculate the reduction potential of that half-cell. Unfortunately, a proton has no electron 
therefore we cannot use ab initio molecular orbital method. With focusing on the behavior of a proton 
in water solvent, we make new scheme to calculate the reduction potential of SHE. In the water sol-
vent, a proton is not stable from the view point of free energy. Protons form oxonium ions by associ-
ating with one or more number of water molecules, like H3O+, H5O+, …, H+(H2O)n, … . We approxi-
mate half-cell of SHE by equation (6) or (7): 

1

2
H2 + 𝑛H2O → H+(H2O)𝑛 + 𝑒−                                                       (6) 

1

2
H2 + (H2O)𝑛 → H+(H2O)𝑛 + 𝑒−                                                       (7) 

The difference of these two equations is the form of water molecules on the left hand side. Both of 
equations (6) and (7) have n H2O molecules. The Gibbs energy of water molecules is calculated by 
summation of an isolated water molecule for equation (6), on the other hand, it is defined as a cluster 
of n water molecules. To clarify this approximation, equations (6) and (7) are expressed by Gibbs En-

ergy in equations (8) and (9): 
1

2
GH2

(g) + 𝑛GH2O(aq) → GH+(H2O)𝑛
(aq)                                             (8) 

1

2
GH2

(g) + G(H2O)𝑛
(aq) → GH+(H2O)𝑛

(aq)                                             (9) 

Where GH2
(g) is the Gibbs energy of hydrogen molecule in the gas, and GH2O(aq), GH+(H2O)𝑛

(aq) and 

G(H2O)𝑛
(aq) are the Gibbs energy of a water molecule, oxonium ion and a cluster of n water molecules 

in water solvent. We estimate the absolute reduction potential of SHE from the difference of the 
Gibbs energy of this half-cells. 
 

3 Results and Discussion 
 
Reduction potential of GOx-FAD 
 
We calculate the Gibbs energy and reduction potential. Table 1 shows the calculated results of each 
model. To calculate the absolute potential, n=1 and F=96.4853kC/mol are employed. The experi-

mental data of this reduction potential is -0.200V [5]. We obtain the absolute potential of 3.69V by 
model 1. If we employ IUPAC recommendation value for SHE reduction potential 4.44V, the reduc-
tion potential is -0.748V. The model 2 gives -0.639V by the same way. The results show the model 2 
gives loser value to the experimental data. A possibility reason is that the tail part of FAD molecule 
makes larger dipole moment on the reduced side. The dipole moments of oxidized side are 14.85 De-
bye and 14.30 Debye in model 1 and model 2. Those two values are almost the same but there is dif-
ference in the dipole moment of reduced side. The model 1 gives 17.41 Debye and model 2 gives 48.63 
Debye. The model 2 has much larger dipole moment. Large dipole moment has effect to stabilize the 
molecule in the water solvent and give the lower Gibbs energy. This effect may give larger difference 
between reduced and oxidized species in model2.  If FAD is combined with GOx, the dipole moment 
of the system becomes larger because of the effect of polarity residues of GOx. It may give the better 
result therefore we will report it in the future. 
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Figure 1. The number of water dependence of 
reduction potential of SHE. The solid line is the 
model 1 which is based on the equation (6). The 
dashed line is the model 2 which is based on the 
equation (7). The model 2 is converged in the 
large n, but model 1 has the minimum in n=4. 
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Table 1. The calculated results of GOx-FAD. The model 1 is calculated by full QM with DFT/B3LYP 6-31+G(d). 

ONIOM method is used for model 2. Same method with model 1 is used for high level layer of ONIOM, and UFF 
is used for the other mechanical part as the force field. 

 Gox 
(A) 

Gred 
(B) 

ΔGred 
(B)-(A) 

E𝑎𝑏𝑠
𝑟𝑒𝑑 

E0
𝑟𝑒𝑑 = Eabs

𝑟𝑒𝑑 − E0
SHE 

IUPAC[b] Matsui[c] 

Model 1 -871.975[a] -872.110[a] -0.135679[a] 3.69V -0.748V -1.30V 

Model 2 -832.227[a] -832.367[a] -0.139667[a] 3.80V -0.639V -1.19V 
[a] The unit is Hartree. [b] The absolute potential is measure by E0

SHE = 4.44𝑉 which is recommended by IUPAC [3]. [c] E0
SHE =

4.99𝑉, reported by Matsui et. al. [4], is used to measure. 

In case we employ Matsui and coworkers’ value of SHE to measure, the reduction potential 
of FAD is -1.19V by model 2. This result is 0.55 V further from the result which is measured by IU-
PAC recommendation. It is surely caused by the difference of SHE value. This fact indicate that the 
choosing of the reduction potential of SHE cause important error. 
 
Reduction potential of SHE 
 
Figure 1 shows the calculated results in each number of water. We calculate the reduction potential of 
the half-cell shown in equation (6) and (7). Model 1, the equation (6), has the minimum with n=4 and 

this structure is known as the most stable [6]. The potential on the minimum is 5.04V. This value is 
very close to Matsui and coworkers’ result 4.99V for DFT/B3LYP 6-31+G(d). On the other hand, 
model 2 which is the calculation of equation (7) is converged in the large n and the results have the 
range about 4.3 to 4.4V. The minimum in model 2 is 4.31V with n=6. In the equation (7), the water 

molecules on the left hand side is structured. The size of cavity when we use PCM is about 1.2 times 
larger than van der Waals surface. The half-cell of SHE is equation (5). If we add n water molecules in 
equation (5), it is changed to equation (10): 

1

2
H2 + 𝑛(H2O) → H+ + 𝑒− + 𝑛(H2O)  (10) 

And a proton associate with water molecules therefore equation (10) is changed to equation (11): 
1

2
H2 + 𝑛(H2O) → H+ + 𝑒− + 𝑛(H2O) 

→ H+(H2O)𝑛 + 𝑒−        (11) 
Seeing this equation, model 1 is similar reac-
tion to the SHE half-cell, but the model 2 
leads to the better result because of the size of 
cavity. Here we consider the case of n=4. If we 

employ the model 1, the size of cavity is 4.8 
times van der Waals surface. One water mole-

cule volume of cavity with PCM is 37.6 Å3 
therefore the size of cavity of model 1 is about 

150 Å3. The cavity of model 2 is 126.6 Å3 from 
the result. We find the size of cavity of model 
1 is much larger than model 2. Figure 2 shows 
the size of cavity in each n and each model. 

Figure 3 shows the size of cavity per one wa-
ter molecule. Calculate from the density of 
liquid water, one water molecule has about 30 
Å3  of volume. Now we calculate the water 
molecule in water solvent, so the volume 
should be around this value. The size of cavity 
per a water molecule is 29.5Å3 with n=6 in 
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model 2. We know n=6 in model  gives the minimum and we consider this value is the suitable for 

reduction potential of SHE with DFT/B3LYP 6-31+G(d). this value is not o far from IUPAC 
recommendation value 4.44 V but little far from Matsui and coworkers’ report 4.99 V. we need to 
calculate SHE potential with the other calculation theory or basissets and discus the correctness. 
 
Reduction potential of GOx-FAD measured by our SHE potential 
 
We consider the reduction potential of SHE is 4.31 V and use this value to measure the reduction po-
tential of GOx-FAD. The result is -0.500 V by FAD model (the model 2 of GOx-FAD). The experi-
mental data is -0.200 V, consequently our result is 0.300 V further than experimental data. In this re-
search, we consider only FAD molecule and just ignore the effect of GOx. If we calculate with a part 
of GOx, it may provide closer value. Kurniawan and coworkers report the reduction potential of 
GOx-FAD with similar calculation method [1]. According to their study, the reduction potential of 
FAD is -0.801 V. Our result is little close to the experimental data. We understand that our calculation 
find more stable structure. 
 

4 Conclusions 
 
We successfully calculated the reduction potential of FAD with ONIOM method. Additionally we 
make a new scheme to calculate the reduction potential of SHE. We estimate 4.31 V for SHE potential. 
This value is close to IUPAC recommendation. We calculate the FAD reduction potential by our SHE 
potential and get -0.500 V. This value is close to experimental data of -0.200 V. 
 In the future, we plan to calculate the reduction potential of FAD with some parts of GOx. 
Residues of GOx around the active site of reaction have effect to the reaction. This calculation may 
give better results. 
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Abstract. We have been applied the conventional approach based on the molecular dynamics simulation to 
estimate the redox potential so far. In this study, we have focused the computational conditions in order to 
estimate standard redox potential by using the energy representation method: we calculate excess chemical 
potential increasing the number of solvent molecules and sampling data for the preparation of energy 
distribution functions. From these results, we have found that the computational value of the standard redox 
potential is close to the experimental value in the case of the system with larger number of solvent molecules 
unaffected by the behavior of counter-ion when we take a sufficient sampling data for the energy distribution 
functions. 
 
Keywords: redox potential, molecular dynamics simulation, thermodynamics cycle, excess chemical 
potential, energy representation method 
 
 
1 Introduction 
 
Understanding of redox (reduction and oxidation) mechanisms with electron transfer in biological 
systems has borne great importance in wide-ranged areas. Analyzing the detailed value of redox 
potential has been key element technology to apply the redox reaction in biological system to the 
industrial field such as the bio-fuel cells [1] and artificial photosynthesis [2] as well as the interest in 
biology [3]. In order to estimate the value of redox potential of molecules, several computational 
models and methods base on the quantum mechanics (QM) [4, 5] and QM/molecular mechanics 
(MM) hybrid methods [6, 7] has been developed with the recently growth of computer architecture. 
However, it is not easy to estimate the redox potential because the redox reaction is associated with 
the free energy change in electron transfer process in the condensed system, much less the 
computation of redox potential of large molecules including proteins due to the computational cost. 
The development of theoretical models and methods to estimate the redox potential for the biological 
systems is still challenging topics in the field of computational science. 
 In the previous report, we have suggested a simple calculation method by using molecular 
dynamics (MD) and density functional theory (DFT) calculations according to thermodynamic cycle 
to estimate the redox potential of molecules, and we have showed the efficiency of our conventional 
approach to estimate the difference of the standard redox potential of molecules relative to the 
normal hydrogen electrode (NHE) potential, which mean the difference of the absolute redox 
potential of molecules, comparing with the experimental data [8]. However, in the view of each 
molecule’s standard redox potential, the computational values have large discrepancies comparing 
with the experimental values. To compute accurate value of standard redox potential should be 
important for the understanding of molecular-specific redox mechanism and the exactly discussions 
of the redox potential with the difference of that of molecules.  
 In this study, we compute the standard redox potential of simple small molecule, acetone, 
relative to the NHE potential. Then, in order to investigate the proper conditions to get more accurate 
value of standard redox potential, we improve the computational method of excess chemical 
potential, which is required to estimate the absolute oxidation free energy in thermodynamic cycle, in 
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the frame work of the energy representation (ER) method [9, 10]: specifically, we calculate the 
dependence of the standard redox potential on the number of solvent molecules in the simulation cell, 
and we evaluate the excess chemical potential increasing the sampling data for the description of the 
energy distribution function. From these results, we have discussed the computational approach by 
using the ER method to estimate the standard redox potential of molecule. 
 

2 Computational procedures 
 
The computation of the standard redox potential of molecule employs the Nernst equation. The 
standard redox potential E!  is associated with the absolute oxidation free energy change, ΔG, and the 
absolute potential of normal hydrogen electrode (NHE), ENHE, which has -4.44 V for the experimental 
data [8, 11], as follow,  

E! = ΔG
nF

+ENHE ,                                                                     (1) 

where, n and F are the number of electrons and the Faraday constant, respectively. According to the 
thermodynamic cycle as shown in Figure 1, the ΔG is given by 

ΔG = ΔE + Δµ N−1( ) −Δµ N( ){ } ,                                                          (2) 

where, ΔE is the ionization free energy, Δµ (N) and Δµ(N-1) are excess chemical potential of molecules in 
reduced and oxidized states, respectively. The ionization free energy is evaluated by the difference of 
the average of total energies of reduced and oxidized configurations, which are obtained from the 
molecular dynamics (MD) simulations of the molecules in solvation. The excess chemical potential is 
calculated by the energy representation (ER) method by utilizing the energy representation module 
(ERmod) program packages [12]. In the ER method, the excess chemical potential is given by the 
energy distribution functions for the solution and reference solvent systems. These energy 
distribution functions are obtained from the different MD simulations. The actual form of the excess 
chemical potential using these energy distribution functions and the details of computational 
methodology are presented in Refs. [9, 10]. 
 In this report, we have used the previous result of equilibrium MD simulations for the 
configurations of the neutral and radical cationic molecule in solvation, and we also have used the 
values of ionization free energy ΔE, which is obtained by the density functional theory (DFT) 
calculations with B3LYP method and 6-31+G(d,p) basis set in the previous study [8]. The excess 
chemical potentials in the neutral and radical cationic states, Δµ (N) and Δµ(N-1), have been reevaluated 

 

Δµ N−1( )Δµ N( )

ΔE

ΔG

Red (solv)� Ox (solv)�

Red (solv)� Ox (solv)�

in gas phase�

in liquid phase�

 
Figure 1. Conventional approach to calculate the absolute oxidation free energy change ΔG based on 
the thermodynamic cycle 
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relative to the different number of solvents system. In this study, we prepare the simulation boxes 
including 1425, 2850 and 4275 solvents molecules; then these system sizes are 36.5 × 34.3 × 34.6 Å, 
45.7 × 43.4 × 43.9 Å and 52.3 × 50.0 × 50.0 Å, respectively. The MD simulation for the calculation of 
energy distribution function is performed utilizing the AMBER 11 program packages [13]. Langevin 
thermostat and barostat are used to control system temperature (T = 300 K) and pressure (P = 1 atm). 
The TIP3P model [14] is adopted for the solvent molecule. Particle mesh Ewald method [15] is used 
for the calculation of coulomb interaction. Cut-off lengths for the real-space coulomb and van der 
Waals (vdW) interactions are 12 Å. The time step for the MD simulation is 2 fs. The AMBER force 
field 03 (parm99) parameters [16, 17] are used for the vdW and torsion interactions of solute 
molecules. On the other hands, for the bond stretching, angle bending and partial charge in acetone 
molecule, we have applied the previous results obtained from the quantum chemical calculations [18]. 
It is noted that for the MD simulations of the radical cationic acetone under the periodic boundary 
conditions, a chloride-ion is inserted into the simulation cell as counter-ion.  
 For the calculation of energy distribution function for the solution system, the sampled structure 
of the solute molecule obtained from the equilibrium MD simulation is put in the center of the MD 
cell, and the water molecules are arranged around the solute molecule. The NPT-MD simulation of 
the solution system is performed for 1 ns to prepare total 100 × 103 snapshots. The configuration of 
the solute molecule is fixed in this simulation. On the other hands, for the calculation of energy 
distribution function for the reference solvent system, the pure solvent system, which has the same 
number of water molecules as the solution system, is prepared. The NPT-MD simulation of the 
reference solvent system is performed for 100ps to obtain 100 snapshots. After that, the sampled 
structures are randomly inserted 1000 times into the pure solvent system of each snapshot: a total of 
100 × 103 sampling data are prepared for the reference solvent system. It is noted that we have 
confirmed that the number of sampling data for the reference solvent system is sufficient to estimate 
the excess chemical potential of molecule in the neutral and radical cationic states. 
 

3 Results and discussions 
 
Table 1 show the computational results of the dependence of absolute oxidation free energy ΔG and 
the standard redox potential E!  of an acetone on the number of solvent molecules in the simulation 
cell. The average values of ΔG or E!  are 186.7, 187.6 and 188.5 kcal/mol or the 3.65, 3.69 and 3.73 V 
for the 1425, 2850 and 4275 solvents systems, respectively. These results show that the computational 
value of standard redox potential is more different from the experimental value (0.16 V [19]) even if 
the number of solvent molecules increases in the simulation cell. The average values of excess 
chemical potential in neutral state, Δµ (N), are -2.3 kcal/mol for all of the solvents systems, showing 
that there is no dependence of the Δµ (N) on the number of solvent molecules. On the other hands, the  
 
Table 1. Dependence of the absolute oxidation free energy ΔG and the standard redox potential E!  on 
the number of solvent molecules, Nwater. The units are kcal/mol for ionization free energy ΔE, excess 
chemical potential in neutral and radical cationic molecules, Δµ (N) and Δµ (N+1), ΔG and V for the E! , 
respectively. The values in parentheses show the standard deviation. 

 

1425 -2.3 (0.2) -36.4 (1.5) 186.7 (2.1) 3.65 (0.09)

2850 -2.3 (0.2) -35.5 (1.4) 187.6 (2.0) 3.69 (0.09)

4275 -2.3 (0.2) -34.6 (2.4) 188.5 (2.8) 3.73 (0.12)

220.8 (1.4)

           a Δµ N( ) ΔGΔµ N−1( ) E !Nwater ΔE

 
a Previous computational result from Refs. [8] 
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Figure 2. (a) Cumulative average of excess chemical potential in radical cationic state Δµ (N+1) for one 
configuration and (b) change of distance between the radical cationic acetone and chloride-ion as a 
function of the number of samples; black, black ash and gray lines indicate these for the 1425, 2850 
and 4275 solvents systems, respectively. 
 
average values of excess chemical potential in radical cationic state, Δµ(N-1), are -36.4, -35.6 and -34.6 
kcal/mol for the 1425, 2850 and 4275 solvents systems, respectively, denoting the same tendency of 
the computational values of ΔG or E! . This results show that the radical cationic acetone is less 
soluble in larger solvents system. 
 In order to investigate the reason of this results, we have analyzed the cumulative average of 
Δµ(N-1), as shown in Figure 2 (a), for just only a configuration of solute molecule, which is pick up from 
equilibrium molecular dynamics (MD) simulation for 10 ns. Additionally, we here plot change of 
distance of counter-ion (chloride-ion) from the center of mass of the solute molecule in Figure 2 (b). 
Comparing the Figure 2 (a) with (b), we find that the Δµ(N-1) become positively large value when the 
counter-ion exists within the distance about 15 Å around the solute molecule; for instance, in the 
Figure 2 (a), the cumulative average of Δµ(N-1) for the 1425 solvents system increase positively from 
about 75 × 103th sampling data, then, the distance between solute molecule and counter-ion become 
short as shown in Figure 2 (b). From this result, we assume that the behavior of the counter-ion 
artificially put in the simulation cell has a negative effect on the evaluation of the excess chemical 
potential of charged solute molecule.  
 Based on this assumption, we focus on one configuration and compute the Δµ(N-1) increasing the 
number of sampling data until 1000 × 103 snapshots for the calculation of energy distribution function. 
Figure 3 (a) and (b) shows the probability distribution of the distance between the solute molecule 
and the counter-ion for the 100 × 103 and 1000 × 103, respectively. These figures indicate that we can 
estimate the Δµ(N-1) with widely coordinate sampling of the counter-ion in the simulation cell because 
we can get distortion-free probability distribution between 0 – 15 Å at some level. 
 The results of the value of Δµ(N-1) are shown in Figure 4. In this Figure, we plot the average of the 
difference of Δµ(N-1) (Δ(Δµ(N-1))) for 1425 solvents system from that for 2850 or 4250 solvents systems. In 
the case of 2850 – 1425 solvents systems, the average of Δ(Δµ(N-1)) become negative value from outside 
of 400 × 103th sampling data. From the result, we find that the value of Δµ(N-1) for 2850 solvents system 
is smaller than that for 1425 solvents system, and specifically, the value of absolute oxidation free   
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Figure 3. (a) and (b) are probability distributions of the distance between the radical cationic acetone 
and chloride-ion for the 100 × 103 and 1000 × 103, respectively; black, black ash and gray lines indicate 
these for the 1425, 2850 and 4275 solvents systems, respectively. 
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Figure 4. Cumulative average of the difference of excess chemical potential in radical cationic state 
Δµ(N-1), which is showed as (Δ(Δµ(N-1))) in the Figure, between the 1425 and 2850 solvents systems 
(black square points) and between the 1425 and 4250 solvents systems (black ash circle points); lines 
are fitting results of these points. 
 
energy ΔG (or also standard redox potential E! ) is close to the experimental value for 0.7 kcal/mol. 
This value is obtained from fitting calculation of all the values of Δ(Δµ(N-1)). On the other hands, in the 
case of 4275 – 1425 solvents systems, the average of Δ(Δµ(N-1)) is still positive value even if we have 
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take the 1000 × 103 sampling data. From the result, it is considered that the computation of Δµ(N-1) for 
the 4275 solvents system is still not satisfied only by 1000 × 103 sampling data due to the widely 
system size; actually, the probability distribution for 4275 solvents system has larger part than that for 
2850 solvents system between the distances from 0 to 15 Å. In order to become negative value for the 
Δ(Δµ(N-1)) and close to the experimental data for the ΔG, we should sufficiently take sampling data for 
the calculation of energy distribution function, and we should compute the average of Δµ(N-1) 
including the other configurations; these treatments would be a future work. Thus, these results 
suggest that the computational approach by using the energy representation (ER) method has the 
possibility of discussion for the standard redox potential of molecule under the condition of the 
sufficiently number of solvent molecules and sampling data to obtain the energy distribution function 
unaffected by the counter-ion.  
 
4 Summary 
 
We have computed the standard redox potential of molecule by using our conventional approach 
with energy representation (ER) method. To compute the absolute oxidation free energy, we have 
investigated the proper conditions for the calculation of excess chemical potential increasing the 
number of solvent molecules and sampling data to get the energy distribution functions in the frame 
work of the ER method.  
 We have discussed about the computational approach by using the ER method to estimate the 
standard redox potential of molecule in relation to the behavior of counter-ion in the simulation cell. 
The computational value of the standard redox potential is close to the experimental value in the case 
of larger system when we take a sufficient sampling data for the calculation of the energy distribution 
functions. These results suggest that the computational approach by using the ER method has the 
possibility of discussion for the standard redox potential of molecule under the condition of the 
sufficiently number of solvent molecules in the simulation cell and sampling data to obtain the 
energy distribution functions unaffected by the counter-ion. 
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  Waals Density Functional Approach 

12:10-12:30 Daiki Yoshikawa (Kanazawa University) 

  Structural and electronic properties and electric field variations of magnetic  

  anisotropy in Fe/MgO interface 

 

Lunch break 

 

DDP session 1 

13:30–13:45 Weerasak Dee-Am (Kanazawa University, CU, Chair: Seiro Omata) 

  Simulation of the motion of a droplet on a plane by the discrete Morse flow 

13:45-14:00 Ullul Azmy (Kanazawa University, ITB, Chair: Seiro Omata) 

  Simulation of a Rising Oil Droplet using an Interface-Fluid Coupling 
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14:00-14:15 Herlan Setiadi (Kanazawa University, ITB, Chair: Seiro Omata) 

  A Particle Based Solver for the Three Dimensional Fluid Flow through an Elastic 

  Porous Medium 

14:15-14:30 Pornchanit Supvilai (Kanazawa University, CU, Chair: Seiro Omata) 

  Simulation of A Soap Film Catenoid 

14:30-14:45 Reza Fahrul Arifin (Kanazawa University, ITB, Chair: Seiro Omata) 

  Triple Junction Simulation using the Acceleration Dependent BMO method 

 

Coffee break 

 

DDP session 2 

15:00-15:15 Armanda Ikhsan (Kanazawa University, ITB, Chair: Masato Kimura) 

  Finite Element Simulation of Crack Propagation- Exact Solution and Phase Field 

  Model 

15:15-15:30 Maharani Ahsani Ummi (Kanazawa University, ITB, Chair: Masato Kimura) 

  Shape Optimization Approach to an Inverse Free Boundary Problem 

15:30-15:45 Iryanto (Kanazawa University, ITB, Chair: Karel Svadlenka) 

  Shallow Water - Navier-Stokes Coupling Method in Ocean Wave Simulation 

15:45-16:00 Fuad Yasin (Kanazawa University, ITB, Chair: Kenichi Kawagoe) 

  Non-vanishing Terms of the Jones Polynomial 

16:00-16:15 Prihardono Ariyanto (Kanazawa University, ITB, Chair: Kenichi Kawagoe) 

  The 5-Puzzle and 8-Puzzle with the Neighbors Swap Motion 

 

Coffee break 

 

DDP session 3 

16:30-16:45 Muhammad Zaki Almuzakki (Kanazawa University, ITB, Chair: Katsuyoshi 

Ohara) 

 Computing general error locator polynomials of 3-error-correcting BCH codes via 

syndrome varieties using minimal polynomials 

16:45-17:00 Dinan Andiwijayakusuma (Kanazawa University, ITB, Chair: Mineo Saito) 

First Principle Study of Hydrogen Impurity in GaN 

17:00-17:15 Muhammad Rifqi Al Fauzan (Kanazawa University, ITB, Chair: Mineo Saito) 

  Multiferroic BiFeO3 for Photovoltaics Application : A First Principle Study 
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17:15-17:30 Sri Rahayu Natasia (Kanazawa University, ITB, Chair: Hidemi Nagao) 

  Prediction of Solvation Free Energy of Proteins: Molecular Dynamics Simulation 

  and QSPR Model Approach 

17:30-17:45 Kazuma Tamura (ITB, Kanazawa University, Chair: Muhamad A. Martoprawiro) 

  Computing reduction potential of Glucose Oxidase enzyme 

 

18:30-  Banquet at University Canteen (“Minami-Fukuri Frepo”) 
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February 18 (Wednesday) 
 

Morning session  Chair: Karel Svadlenka 

9:00-9:30  Petr Pauš1), 2), Michal Beneš1), and Jan Kratochvíl1) (Czech Technical University  

in Prague1), Meiji University2)) 

  Numerical simulation of dislocation cross-slip in non-symmetric configurations 

9:30-10:00  Krung Sinapiromsaran (Chulalongkorn University) 

  Simplex improvement without artificial variables 

10:00-10:30 Muhamad A. Martoprawiro (Bandung Institute of Technology) 

  Computational study of structure and stability of  [Fen(L1)p(L2)q]x+ and [Fen(L1)r]y+ 

  polymeric complexes with n = 2, 4, and 6, L1 = 1,2,4-4H-triazole, L2 =  

  1,2,4-triazolato, p = 4, 8, and 12, q = 2, 4, and 6, r = 6, 12, and 18, x = 2, 4, 6, and 

  y = 4, 8, 12 

 

Poster session / Business meeting 

10:30-12:00 See below for poster session program 

12:00  Group Photo 

 

Lunch break 

 

Special session Universities Introduction for Studying Abroad   Chair: Masato Kimura 
This is a special session for Japanese students in Kanazawa University to study 
abroad. Some universities with which Faculty of Mathematics and Physics, 
Kanazawa University has (or is planning to have) student exchange programs are 
introduced. This session is performed in Japanese and English. 

13:30-13:40  Masato Kimura (Kanazawa University) 

An encouragement of studying abroad 

13:40-13:50  Muhamad A. Martoprawiro (Bandung Institute of Technology)  

Introduction of Bandung Institute of Technology (Bandung, Indonesia) 

13:50-14:00  Krung Sinapiromsaran (Chulalongkorn University)  

Introduction of Chulalongkorn University (Bangkok, Thailand) 

14:00-14:10   Question time 

14:10-14:20  Koichi Matsumoto (Kanazawa University) 

Introduction of Kazan Federal University (Kazan, Russia) 

14:20-14:30  Masato Kimura (Kanazawa University) 

Introduction of Eindhoven University of Technology (Eindhoven, Netherlands) 
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14:30-14:40  Petr Pauš (Czech Technical University, Meiji University) 

Introduction of Czech Technical University (Prague, Czech Republic) 

14:40-14:45  Question time 

 

Coffee break 

 

Afternoon session Chair: Shinichi Miura 

15:00-15:30 Tsutomu Kawatsu (The University of Tokyo, Yokohama City University) 

  Application of Ab initio Path Integral Molecular Dynamics to Molecular Systems 

15:30-16:00 Takashi Uneyama (Kanazawa University) 

  Modelling and Simulations of Polymeric Systems under Static and Dynamic  

  Constraints 

16:00-16:30 Tomoaki Niiyama (Kanazawa University) 

The molecular dynamics study on non-equilibrium critical behaviors in crystalline 

plasticity 
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Poster session  (10:30 – 12:00 February 18) 
 
1. Weerasak Dee-Am (Kanazawa University, CU) 

Simulation of the motion of a droplet on a plane by the discrete Morse flow 

2. Ullul Azmy (Kanazawa University, ITB) 

Simulation of a Rising Oil Droplet using an Interface-Fluid Coupling 

3. Herlan Setiadi (Kanazawa University, ITB) 

A Particle Based Solver for the Three Dimensional Fluid Flow through an Elastic Porous Medium 

4. Pornchanit Supvilai (Kanazawa University, CU) 

Simulation of A Soap Film Catenoid 

5. Reza Fahrul Arifin (Kanazawa University, ITB) 

Triple Junction Simulation using the Acceleration Dependent BMO method 

6. Armanda Ikhsan (Kanazawa University, ITB) 

Finite Element Simulation of Crack Propagation- Exact Solution and Phase Field Model 

7. Maharani Ahsani Ummi (Kanazawa University, ITB) 

Shape Optimization Approach to an Inverse Free Boundary Problem 

8. Iryanto (Kanazawa University, ITB) 

Shallow Water - Navier-Stokes Coupling Method in Ocean Wave Simulation 

9. Fuad Yasin (Kanazawa University, ITB) 

Non-vanishing Terms of the Jones Polynomial 

10. Prihardono Ariyanto (Kanazawa University, ITB) 

The 5-Puzzle and 8-Puzzle with the Neighbors Swap Motion 

11. Muhammad Zaki Almuzakki (Kanazawa University, ITB) 

Computing general error locator polynomials of 3-error-correcting BCH codes via syndrome varieties 

using minimal polynomials 

12. Dinan Andiwijayakusuma (Kanazawa University, ITB) 

First Principle Study of Hydrogen Impurity in GaN 

13. Muhammad Rifqi Al Fauzan (Kanazawa University, ITB) 

Multiferroic BiFeO3 for Photovoltaics Application : A First Principle Study 

14. Sri Rahayu Natasia (Kanazawa University, ITB) 

Prediction of Solvation Free Energy of Proteins: Molecular Dynamics Simulation and QSPR Model 

Approach 

15. Kazuma Tamura (ITB, Kanazawa University) 

Computing reduction potential of Glucose Oxidase enzyme 
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16. Takahiro Ito (Kanazawa University) 

Analysis of numerical oscillation of Crank-Nicolson method for the heat equation 

17. Takayuki Noda (Kanazawa University) 

Wave simulation using Navier-Stokes Equation and Shallow Water Equation Models 

18. Daiki Yoshikawa (Kanazawa University) 

Structural and electronic properties and electric field variations of magnetic anisotropy in Fe/MgO 

interface 
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List of participants 
 
Seiro Omata  Kanazawa University  

omata@se.kanazawa-u.ac.jp 
Masato Kimura  Kanazawa University 
   mkimura@se.kanazawa-u.ac.jp  
Manabu Oura  Kanazawa University 
   oura@se.kanazawa-u.ac.jp 
Osamu Ogurisu  Kanazawa University 

ogurisu@staff.kanazawa-u.ac.jp 
Karel Svadlenka Kyoto University 

karel@math.kyoto-u.ac.jp  
Katsuyoshi Ohara  Kanazawa University 
   ohara@se.kanazawa-u.ac.jp	
  
Norbert Pozar  Kanazawa University 
   npozar@se.kanazawa-u.ac.jp 
Mineo Saito Kanazawa University

 m-saito@cphys.s.kanazawa-u.ac.jp 
Hidemi Nagao  Kanazawa University    
   nagao@wriron1.s.kanazawa-u.ac.jp 
Tatsuki Oda Kanazawa University 
 oda@cphys.s.kanazawa-u.ac.jp 
Shinichi Miura  Kanazawa University 

smiura@mail.kanazawa-u.ac.jp 
Hiroshi Iwasaki  Kanazawa University    
   iwasaki@cs.s.kanazawa-u.ac.jp 
Fumiyuki Ishii  Kanazawa University    
   ishii@cphys.s.kanazawa-u.ac.jp 
Hiroaki Saito Kanazawa University

 saito@wriron1.s.kanazawa-u.ac.jp 
Kazutomo Kawaguchi Kanazawa University

 kkawa@wriron1.s.kanazawa-u.ac.jp 
Hakim L. Malasan Bandung Institute of Technology 
  hakim@as.itb.ac.id 
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Muhamad A. Martoprawiro Bandung Institute of Technology 
 muhamad@chem.itb.ac.id 
Masashi Iwayama Kanazawa University 
  iwayama@wriron1.s.kanazawa-u.ac.jp 
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Masao Obata  Kanazawa University 
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Daiki Yoshikawa  Kanazawa University 
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Petr Pauš Czech Technical University in Prague 
 prasatko55@gmail.com 
Krung Sinapiromsaran  Chulalongkorn University 
 krung.s@gmail.com 
Tsutomu Kawatsu  The University of Tokyo, Yokohama City University 
 kawatsu@fukui.kyoto-u.ac.jp 
Takashi Uneyama  Kanazawa University 
 uneyama@se.kanazawa-u.ac.jp 
Tomoaki Niiyama  Kanazawa University 
 niyama@se.kanazawa-u.ac.jp 
Takahiro Ito  Kanazawa University 
   ituuuti@gmail.com 
Takayuki Noda Kanazawa University 
 t.noda1031@gmail.com 
* Weerasak Dee-Am  Kanazawa University, Chulalongkorn University 
 uueerasak@gmail.com 
* Ullul Azmy  Kanazawa University, Bandung Institute of Technology 
 ullul.azmy@hotmail.com 
* Herlan Setiadi  Kanazawa University, Bandung Institute of Technology 
 hsd.the.explorer@gmail.com 
* Pornchanit Supvilai  Kanazawa University, Chulalongkorn University 
 hippoarale@gmail.com 
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* Reza Fahrul Arifin  Kanazawa University, Bandung Institute of Technology 
 mxt.reza@gmail.com 
* Armanda Ikhsan  Kanazawa University, Bandung Institute of Technology 
 armandaikhsan@gmail.com 
* Maharani Ahsani Ummi  Kanazawa University, Bandung Institute of Technology 
 maharaniahsani@gmail.com 
* Iryanto  Kanazawa University, Bandung Institute of Technology 
 iryanto.math@yahoo.com 
* Fuad Yasin  Kanazawa University, Bandung Institute of Technology 
 yasin.fuad@hotmail.com 
* Prihardono Ariyanto  Kanazawa University, Bandung Institute of Technology 
 prihardono@gmail.com 
* Muhammad Zaki Almuzakki Kanazawa University, Bandung Institute of Technology 
 muhammad.almuzakki@gmail.com 
* Dinan Andiwijayakusuma  Kanazawa University, Bandung Institute of Technology 
 dandiwijaya@gmail.com 
* Muhammad Rifqi Al Fauzan Kanazawa University, Bandung Institute of Technology 
  alfauzan.rifqi@gmail.com 
* Sri Rahayu Natasia  Kanazawa University, Bandung Institute of Technology 
 ayu@wriron1.s.kanazawa-u.ac.jp 
* Kazuma Tamura  Bandung Institute of Technology, Kanazawa University 
 tamura@wriron1.s.kanazawa-u.ac.jp 
 
* This Double-Degree program is an educational program based on the agreement of 
cooperation between Kanazawa University and Bandung Institute of Technology and between 
Kanazawa University and Chulalongkorn University. Therefore, the affiliation of students 
participating in this program is as follows: 
 

Graduate School of Natural Science and Technology, Kanazawa University, Japan & 
Faculty of Mathematics and Natural Sciences, Bandung Instituted of Technology, 
Indonesia 
or 
Graduate School of Natural Science and Technology, Kanazawa University, Japan & 

Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn 

University, Thailand 






